scholarly journals Continuous desalting concept on ionic liquid-mediated de-acidification process of crude oil: A pilot study

2021 ◽  
Vol 1195 (1) ◽  
pp. 012013
Author(s):  
A Hussain ◽  
J Basar

Abstract Desalting process concept was tested using methyltrimethylammonium methylcarbonate [N4441][MeCO3] treated Pyrenees crude oil (initial Total Acid Number (TAN) of 1.6 mg KOH/g oil) with the aim to gain empirical evidences on the effectiveness of in-line water washing and electrostatic aided phase separation as mean to recover the naphthenic acid derivatives for recycling. The treated crude oil (final TAN value of less than 0.3 mg KOH/g oil) was subjected to typical operating scheme such as single stage desalting and effects of water wash volumes. The novelty of the work comes from the utilisation of ionic liquids to neutralise acid components of the crude oil. Furthermore, the work is also able to test the hypothesis of whether naphthenate salts behave as is its inorganic counterpart and quantify the solubility behaviour in water as extraction medium. The effectiveness of such scheme will be measured against naphthenic acids derivative percent recovery in the wash water. The results indicate the electrostatic conditions can facilitate the recovery of the naphthenate salts post neutralization with high recovery rate of average of 70.6 % with 30 % water wash volume in a single-stage contact, observed over 12 hours steady-state operation. The water wash weight was observed to increase post separation which indicate hydrocarbon carry-over in the heavy phase due to formation of tight water – oil emulsion. The technique is viable should the amount of water required is available and the process water can be recycled safely into the desalter again without causing tripping to the desalter. Ionic liquid can be used in conjunction with desalter and the presence of electrostatic field did hasten the separation of the phases, however the amount of water used may hinder the viability of the solution.

2015 ◽  
Vol 1107 ◽  
pp. 79-84
Author(s):  
Norshahidatul Akmar Mohd Shohaimi ◽  
Jafariah Jaafar ◽  
Wan Azelee Wan Abu Bakar

Oil is one of the most important energy sources for the world and will likely remain so for many decades, even in the most optimistic projection about the growth of alternative energy sources. Petroleum industry nowadays faced a problem when the naphthenic acid (NA) compound naturally present in the acidic crude oil tends to induce corrosion in oil refining process. Total Acid Number (TAN) represent the amount of naphthenic acid in the oil with the permissible limit of TAN in crude oil is less than 1. Various methods had been used to remove NA in crude oil such as dilution and caustic washing. But all methods have their own weakness. Hence, in order to overcome the acidic crude oil problem, a new catalytic deacidification technique will be introduced in this study. Three types of crude: Petronas Penapisan Melaka Heavy Crude (Crude A) and Light Crude (Crude B) and Korean Crude (Crude C) were studied. Parameters studied were dosing amount of basic chemical used, catalyst calcination temperature, and percentage of the basic chemical in the co-solvent. The basic chemical used in this study was ammonia solution in ethylene glycol (NH3-EG). By using Ca/Al2O3 catalyst with calcination temperature of 10000C, the results showed 66.7% (1000 mg/L of NH3-EG) reduction in TAN for crude A, 53.9% reduction for crude B while for crude C the percentage of TAN reduction was 41% only. Addition of Cu as a dopant in this study had increased the TAN reduction for all three types of crude oil. TAN in crude A (80% of TAN reduction) and crude B (77% of TAN reduction) were successfully reduced to less than 1 with only using 1000 mg/L of NH3-EG with the aids of Cu/Ca (10:90)/Al2O3 catalyst at calcination temperature of 10000C while for crude C the TAN was still higher than 1 but the percentage of TAN reduction increased to 46%.


2019 ◽  
Vol 7 (SI-TeMIC18) ◽  
Author(s):  
Norshahidatul Akmar Shohaimi ◽  
Wan Azelee Wan Abu Bakar ◽  
Nurasmat Mohd Shukri ◽  
Khairan Shaidi

Naphthenic acids (NAs) is one of the major sources of corrosion in oil pipelines and distillation units in crude oil refineries. Removing NA compounds from crude oils is regarded as one of the most crucial processes in heavy oil upgrading. Catalytic deacidification method had been developed in order to reduce the total acid number values in crude oil. Crude oil from Petronas Penapisan Melaka had been chosen to be studied with original total acid number (TAN) of 2.43 mg KOH/g. The parameters used were different catalyst calcination temperatures, catalyst loading, reagent concentration, reaction times and reaction temperature. Acid removal agent of 2-methylimidazole in ethanol and monometallic calcium and cerium doped with alumina were used as a catalyst. The results showed that with the aid of catalyst, the TAN can be reduced to lower than 1 mg KOH/g. Catalyst of Ca/Al2O3 calcined at 900oC gave a better reduction than Ce/Al2O3 with 83.54% of TAN reduction (2.43 to 0.4) for Ca/Al2O3 catalyst and 71.19% (2.43 to 0.7) for Ce/Al2O3 catalyst. The best catalyst underwent several characterization methods such as X-Ray Diffraction Spectroscopy (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetry Analysis (TGA-DTA) for its physicochemical properties. It can be concluded that catalytic deacidification method was effective in extracting NAs from the crude oil thus lowered the TAN value to less than 1 mg KOH/g. Keywords: Naphthenic acids; Crude oil; Catalysts


2021 ◽  
Vol 1025 ◽  
pp. 284-289
Author(s):  
Nurul Hidayah Aziz ◽  
Norshahidatul Akmar Mohd Shohaimi ◽  
Noraini Safar Che Harun

Processing of petroleum crude oil with high total acid number (TAN) lead to corrosion problems in oil refinery equipment, storage, facilities and even reduces the performances of the oil. The purpose of this study is to overcome the corrosion problem in oil refinery by reducing the TAN in the oil to less than 1 mgKOH/g. A 2-methylimidazole in ethanol with the aid of Ni/Ce (10:90)/Al2O3 catalyst through the catalytic deacidification technique. The catalyst was prepared by using Incipient Wetness Impregnation (IWI) methods on alumina beads as catalyst support and calcined at 800°C, 900°C and 1000°C. Ni/Ce (10:90)/Al2O3 catalyst was characterized by using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction Spectroscopy (XRD) and Brunauer-Emmett-Teller (BET) to study physicochemical properties of the catalyst. The results shows that Ni/Ce (10:90)/Al2O3 catalyst successfully reduced TAN in crude oil to 0.50 from 4.22 mg KOH/g at 1000°C calcination temperature and catalyst loading of 0.39% (7 beads). XRD analysis proposed Al2O3 and CeO2 fcc was the active site for Ni/Ce (10:90)/Al2O3 catalyst. C-H alkanes stretching, -CH2- alkanes stretching and pure metal oxides stretching modes were detected on the catalyst at wavelength of 2952.49 to 2852.82, 1599.38, and 862.81 to 537.27 cm-1 respectively by FTIR analysis after catalytic deacidification process which indicates that there were impurities that have adsorbed on the catalyst surface. As a conclusion, the catalysts successfully reduced the TAN value of acidic crude oil to less than 1.00 mg KOH/g.


2020 ◽  
Vol 606 ◽  
pp. 117835
Author(s):  
Kanghee Cho ◽  
Bharat Singh Rana ◽  
Dong-Woo Cho ◽  
Hee Tae Beum ◽  
Cheol-Hyun Kim ◽  
...  

2021 ◽  
Vol 1025 ◽  
pp. 337-342
Author(s):  
Noraini Safar Che Harun ◽  
Norshahidatul Akmar Mohd Shohaimi ◽  
Shaari Daud

The Naphthenic Acid (NA) found in the acidic crude oil is one of the main challenges that can lead to corrosion problem in oil refinery equipment and reduces the quality of the oil. In this study, catalytic neutralization reaction was investigated in order to lowering Total Acid Number (TAN) in crude oil to less than one mg KOH/g utilizing 2-Methylimidazole in Polyethylene Glycol (PEG) with aid of Ca/Al2O3 catalyst. The catalyst were supported on the alumina beads through Incipient Wetness Impregnation (IWI) methods and heated in an oven for 24 hours at 80-90°C then calcined at calcination temperatures of 800, 900 and 1000°C. The result showed that Ca/Al2O3 catalyst successfully reduced to 0.52 mg KOH/g from original TAN value 4.22 mg KOH/g by using a catalyst at calcination temperature 1000°C, 0.39 wt % (7 beads) of catalyst loading and 1000 ppm of 2-Methylimidazole in PEG. It can be concluded that catalytic deacidification method was effective method in reducing NAs from the crude oil and can lowered the TAN value to less than 1 mg KOH/g.


2012 ◽  
Vol 4 (5) ◽  
pp. 21-31 ◽  
Author(s):  
Haydée Quiroga-Becerra

This article presents the kinetic study of the esterification reaction of naphthenic acids from a Colombian heavy crude oil, with a Total Acid Number (TAN) of 7,33 mgKOH/g, in a batch type reactor. Temperature was changed between 150 - 250°C while the ratio moles of methanol per mole of carboxylic groups, remained constant in 20:1. The reaction time was varied from 0 - 600 minutes. Reduction in the concentration of naphthenic acids in the reactor is determined by the measurement of Number Total Acid (TAN), ASTM D 664. Naphthenic acids were extracted from the crude and structurally characterized by Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). The esterified oil was analyzed by FTIR, to identify the variation of the main functional groups. After determining the activation energy, frequency factor and, reaction order, a kinetic law was proposed for the esterification of naphthenic acids in Colombian heavy oil. Finally, it was evaluated the effect of esterification of naphthenic acids on the corrosion of steel ASTM A106 Gr.B. The corrosion of steel was reduced from 34,16 to 3,08 mils per year, (mpy), after esterification of naphthenic acids.


Author(s):  
Norshahidatul Akmar Mohd Shohaimi ◽  
Norfakhriah Jelani ◽  
Ahmad Zamani Ab Halim ◽  
Nor Hakimin Abdullah ◽  
Nurasmat Mohd Shukri

: The presence of relatively high naphthenic acid in crude oil may contribute to the major corrosion in oil pipelines and distillation units in crude oil refineries. Thus, high concentration Naphthenic Acids crude oil is considered tobe of low quality and is marketed at lower prices. In order to overcome this problem, neutralization method had been developed to reduce the TAN value in crude oil. In this study, crude oil from Petronas Penapisan Melaka was investigated. The parameters studied were reagent concentration, catalyst loading, calcination temperature and reusability of the potential catalyst. Basic chemical used were 2- methylimidazole in polyethylene glycol (PEG 600) with concentration 100, 500 and 1000 ppm. Cerium oxide-based catalysts supported onto alumina prepared with different calcination temperatures. The catalyst was characterized by using Brunauer-Emmett-Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetry Analysis-Differential Thermal Gravity (TGA-DTG) to study physical properties of the catalyst. The Ce/Al2O3 catalyst calcined at 1000°C was the best catalyst due to larger surface area formation which lead to increment of active sites thus will boost the catalytic activity. The result showed that the Ce/Al2O3 catalyst meet Petronas requirement as the TAN value reduced to 0.6 mgKOH/g from original TAN value of 4.22 mgKOH/g. The best reduction of TAN was achieved by using catalyst loading of 0.39% and reagent of 1000 ppm.


Sign in / Sign up

Export Citation Format

Share Document