scholarly journals Elastic modulus of defected graphene sheets

2021 ◽  
Vol 1199 (1) ◽  
pp. 012021
Author(s):  
J Bocko ◽  
P Lengvarský

Abstract In this paper, the elastic modulus of single-layered graphene sheets (SLGSs) with and without defects is investigated using the finite element method. The SLGSs with two chiralities (armchair and zigzag) are modeled by beam elements. At first, the SLGSs without defects are investigated then the carbon atoms and corresponding beam elements are removed and the elastic modulus of SLGSs is determined. The increasing number of defects apparently decreased the elastic modulus of graphene sheets.

2018 ◽  
Vol 157 ◽  
pp. 06002
Author(s):  
Jozef Bocko ◽  
Pavol Lengvarský

The paper is devoted to the problems related to buckling analysis of graphene sheets without and with vacancies in the structure under different boundary conditions. The analysis was performed by the classical numerical treatment – the finite element method (FEM). The graphene sheets were modelled by beam elements. Interatomic relations between carbon atoms in the structure were represented by the beams connecting individual atoms. The behaviour of the beam as structural element was based on the properties that were established from relations of molecular mechanics. The vacancies in single layer graphene sheets (SLGSs) were created by elimination of randomly chosen atoms and corresponding beam elements connected to the atoms in question. The computations were accomplished for different percentage of atom vacancies and the results represent an obvious fact that the critical buckling force decreases for increased percentage of vacancies in the structure. The numerical results are represented in form of graphs.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Chenfei Shao ◽  
Chongshi Gu ◽  
Zhenzhu Meng ◽  
Yating Hu

Both numerical simulations and data-driven methods have been applied in dam’s displacement modeling. For monitored displacement data-driven methods, the physical mechanism and structural correlations were rarely discussed. In order to take the spatial and temporal correlations among all monitoring points into account, we took the first step toward integrating the finite element method into a data-driven model. As the data-driven method, we selected the random coefficient model, which can make each explanatory variable coefficient of all monitoring points following one or several normal distributions. In this way, explanatory variables are constrained. Another contribution of the proposed model is that the actual elastic modulus at each monitoring point can be back-calculated. Moreover, with a Lagrange polynomial interpolation, we can obtain the distribution field of elastic modulus, rather than gaining one value for the whole dam in previous studies. The proposed model was validated by a case study of the concrete arch dam in Jinping-I hydropower station. It has a better prediction precision than the random coefficient model without the finite element method.


2017 ◽  
Vol 11 (2) ◽  
pp. 116-120 ◽  
Author(s):  
Jozef Bocko ◽  
Pavol Lengvarský

AbstractThe paper deals with application of the finite element method in modelling and simulation of nanostructures. The finite element model is based on beam elements with stiffness properties gained from the quantum mechanics and nonlinear spring elements with force-displacement relation are gained from Morse potential. Several basic mechanical properties of structures are computed by homogenization of nanostructure, e.g. Young's modulus, Poisson's ratio. The problems connecting with geometrical parameters of nanostructures are considered and their influences to resulting homogenized quantities are mentioned.


2012 ◽  
Vol 466-467 ◽  
pp. 366-370
Author(s):  
Fue Han ◽  
Chang Qing Chen ◽  
Ya Peng Shen

Through the finite element method, the elastic modulus and Poisson ratio out of plane of the honeycomb nanoporous materials are obtained. In the end, the values are contrasted with the scale values. Results show that the values are same to the scale values.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1545 ◽  
Author(s):  
Liu Chu ◽  
Jiajia Shi ◽  
Shujun Ben

Vacancy defects are unavoidable in graphene sheets, and the random distribution of vacancy defects has a significant influence on the mechanical properties of graphene. This leads to a crucial issue in the research on nanomaterials. Previous methods, including the molecular dynamics theory and the continuous medium mechanics, have limitations in solving this problem. In this study, the Monte Carlo-based finite element method, one of the stochastic finite element methods, is proposed and simulated to analyze the buckling behavior of vacancy-defected graphene. The critical buckling stress of vacancy-defected graphene sheets deviated within a certain range. The histogram and regression graphs of the probability density distribution are also presented. Strengthening effects on the mechanical properties by vacancy defects were detected. For high-order buckling modes, the regularity and geometrical symmetry in the displacement of graphene were damaged because of a large amount of randomly dispersed vacancy defects.


2021 ◽  
Vol 4 (2) ◽  
pp. 30
Author(s):  
Tian Yang

The finite element method is used to simulate the orbital structure, and the finite element model of "rail - sleepers - ballast" can be established. The model of the elastic modulus of different ballast and sleeper is calculated, and the rail displacement, the sleeper stress and the fastening force are deduced. The results show that the elastic modulus of the ballast can be increased to reduce the displacement of the rail and the supporting force of the fastener, but the stress of the sleeper will be increased. When the modulus of elasticity increases, the rail displacement, small.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document