scholarly journals Impact of the curing conditions and carbon dioxide ingress on heavyweight concrete

2021 ◽  
Vol 1205 (1) ◽  
pp. 012007
Author(s):  
J Cepcianska ◽  
J Dragomirova ◽  
E Kuzielova ◽  
M Zemlicka ◽  
M T Palou

Abstract The present work investigates the influence of curing conditions on the mechanical and physical properties of heavyweight concrete. The prismatic bars of 40 mm × 40 mm × 160 mm dimension were cured in a climatic chamber (relative humidity 30%, average temperature 26°C), wet (100% of humidity, average room temperature 26°C) and CO2 chamber-wet (relative humidity 90%, average temperature 50°C and average CO2 concentration 20 %) conditions for 2, 7, 28 and 90 days. Density, compressive strength, dynamic modulus of elasticity, and longitudinal shrinkage were determined at different ages of curing. Mercury Intrusion Porosimetry was used to analyze and determine the influence of carbonation on pore structure evolution. Samples cured under CO2-wet conditions showed a higher compressive strength (54.05, 66.83, 84.98, 96.35 MPa) compared to that of the samples exposed to wet (45.49, 65.87, 78.91, 93.80 MPa) and dry (39.62, 46.52, 48.45, 45.28 MPa) conditions at all ages. The dynamic modulus of elasticity of CO2-wet cured samples (53.02, 51.48, 59.24, 67.60 GPa) was lower than that of samples cured in wet conditions (59.82, 66.76, 78.84, 80.27, GPa), but higher than that of dry-cured samples (45.74, 45.73, 43.91, 44.62 GPa). The density of the samples exposed to all curing conditions was higher than 3800 kg/m3. Carbonation led to a decrease in total porosity (from 10% to 20%) and an increase in density (from 320 to 390 kg/m3). Also, the time and curing conditions have strongly influenced the pore structure. The precipitation of calcium carbonate in the matrix of concrete and the acceleration of hydration reaction under wet conditions has led to a decrease in porosity.

Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 104
Author(s):  
Fernando A. N. Silva ◽  
João M. P. Q. Delgado ◽  
António C. Azevedo ◽  
Tahlaiti Mahfoud ◽  
Abdelhafid Khelidj ◽  
...  

Early deterioration of reinforced concrete foundations has been often reported in recent years. This process is usually characterized by an extensive mapping cracking process on concrete surfaces that results from several types of Internal Swelling Reaction (ISR). In this paper, a real case study of a tall reinforced concrete building with a severe deterioration process installed in its deep foundations is discussed. Laboratory tests were performed in concrete drilled cores extracted from a deep pile cap block 19 years after the beginning of construction. Tests to assess the compressive strength, the static and the dynamic modulus of elasticity, the gas permeability, and electron microscopy scanning to find out the primary mechanism responsible for the deterioration observed during in situ inspections. Chemical alterations of materials were observed in concrete cores, mainly due to Delayed Ettringite Formation (DEF), which significantly affected the integrity and durability of the structure. Dynamic modulus of elasticity showed to be a better indicator of damage induced by ISR in concrete than compressive strength. Procedures to strengthen the deteriorated elements using prestressing proved to be an efficient strategy to recover the structural integrity of pile caps deteriorated due to expansions due to ISR.


Holzforschung ◽  
2007 ◽  
Vol 61 (4) ◽  
pp. 414-418 ◽  
Author(s):  
Cheng-Jung Lin ◽  
Ming-Jer Tsai ◽  
Chia-Ju Lee ◽  
Song-Yung Wang ◽  
Lang-Dong Lin

Abstract The effects of ring characteristics on the compressive strength and dynamic modulus of elasticity of seven softwood species in Taiwan were examined. The results revealed good correlation between compressive strength and dynamic modulus of elasticity obtained using an ultrasonic wave technique (correlation coefficient r=0.77–0.86). Overall, compressive strength increased with decreasing ring width parameters and increasing ring density parameters. Ring density was related to compressive strength, but was not the sole factor affecting the wood strength. According to our statistical analysis, compressive strength was affected by various ring characteristics. Relationships between ring characteristics and compressive strength are influenced by the anatomic direction. Results revealed that earlywood density and minimum density in a ring are equally important variables for evaluating the compressive strength of wood.


2011 ◽  
Vol 243-249 ◽  
pp. 165-169 ◽  
Author(s):  
Iqbal Khan Mohammad

Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. The commonly NDT methods used for the concrete are dynamic modulus of elasticity and ultrasonic pulse velocity. The dynamic modulus of elasticity of concrete is related to the structural stiffness and deformation process of concrete structures, and is highly sensitive to the cracking. The velocity of ultrasonic pulses travelling in a solid material depends on the density and elastic properties of that material. Non-destructive testing namely, dynamic modulus of elasticity and ultrasonic pulse velocity was measured for high strength concrete incorporating cementitious composites. Results of dynamic modulus of elasticity and ultrasonic pulse velocity are reported and their relationships with compressive strength are presented. It has been found that NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development.


2010 ◽  
Vol 163-167 ◽  
pp. 1655-1660
Author(s):  
Jian Zhang ◽  
Bo Diao ◽  
Xiao Ning Zheng ◽  
Yan Dong Li

The mechanical properties of high strength concrete(HSC) were experimentally investigated under mixed erosion and freeze-thaw cycling according to ASTM C666(Procedure B), the erosion solution was mixed by weight of 3% sodium chloride and 5% sodium sulfate. The mass loss, relative dynamic modulus of elasticity, compressive strength, elastic modulus and other relative data were measured. The results showed that with the increasing number of freeze-thaw cycles, the surface scaled more seriously; the mass loss, compressive strength and elastic modulus continued to decrease; the relative dynamic modulus of elasticity increased slightly in the first 225 freeze-thaw cycles, then decreased in the following 75 cycles; the corresponding strain to peak stress decreased with the increase of freeze-thaw cycles. After 200 cycles, the rate of deterioration of concrete accelerated obviously.


2010 ◽  
Vol 168-170 ◽  
pp. 2565-2570 ◽  
Author(s):  
Xu Guang Tang ◽  
You Jun Xie ◽  
Guang Cheng Long

The deterioration on sulfate attack was investigated both in physical crystallization and the chemical erosion. Specimens that suffered long-term immersion and dry-wet cycles in saturated sodium sulfate solution are compared to trace the physical attack. And the chemical erosion was conducted by comparing specimens which have been suffered long-term immersion in saturated sodium sulfate solution and saturated limestone solution. In the investigation, the non-destructive detecting indexes, such as the ultrasonic velocity, and the dynamic modulus of elasticity were measured. The permeability, the porosity and mechanical strength at 28-day age were measured. The flexural/compressive strength was measured after 90 wet-dry cycles. And then all the specimens were cut into cubes to take the measure of compressive strength. Based on the experiments, feasibility of various parameters, such permeability, relative dynamic modulus of elasticity, ultrasonic velocity and relative flexural/compressive strength, were investigated to evaluate the concrete deterioration. The results indicate that there is a close relationship between the deterioration by sulfate attack and concrete permeability, so the reduction of permeability is effective in promoting the resistance. The index of the resistance expressed by the dynamic modulus of elasticity ratio is comparable to that expressed by the relative flexural strength. A novel method was suggested in evaluating concrete by sulfate attack, namely, combined with some mechanical tests, the parameter of relative dynamic modulus of elasticity can be used to evaluate the deterioration; the permeability denoted as the amount of transporting charges within 6 hours can be used to evaluate the properties to sulfate attack.


2021 ◽  
Vol 55 (2) ◽  
pp. 171-181
Author(s):  
Yongjun Qin ◽  
Jiejing Chen ◽  
Ke Liu ◽  
Yi Lu

A water freeze-thaw cycle and sulfate freeze-thaw coupling cycle were explored experimentally to evaluate the durability of recycled concrete with lithium slag (LS). The damage-deterioration law was studied from the aspects of mass-change rate, relative dynamic modulus of elasticity, and cube’s compressive strength. Based on the relative dynamic modulus of elasticity, the damage-degree equation of the concrete was fitted, and a mechanical-attenuation model related to this parameter and the cube’s compressive strength was established and verified. The damage mechanism under the action of the sulfate freeze-thaw cycle was revealed through scanning electron microscopy (SEM). The combination of recycled coarse aggregate (RCA) and LS was beneficial to the anti-deterioration ability of the concrete. During the cycle experiments, the mass and relative dynamic modulus of elasticity increased initially and then decreased, while the cube’s compressive strength declined continually. The concrete with a 30 % RCA substitution rate and 20 % LS exhibited the optimal comprehensive durability, and specimens with excessive LS showed more susceptibility to sulfate erosion. The residual compressive strength of concrete structures can be evaluated by measuring the relative dynamic modulus of elasticity as the two parameters are ideally correlated.


Sign in / Sign up

Export Citation Format

Share Document