scholarly journals Conceptual Design of Passive Safety System for Lead-Bismuth Cooled Fast Reactor

Author(s):  
A G Abdullah ◽  
A B D Nandiyanto
Author(s):  
Mian Xing ◽  
Zhaocan Meng ◽  
Xiaotao Liao ◽  
Canhui Sun ◽  
Shuming Zhang ◽  
...  

SPICRI (State Power Investment Central Research Institute) is developing a new conceptual design of heating-reactor, named Heating-reactor of Advanced low-Pressurized and Passive safetY system (HAPPY), which is targeted for the district heating, desalination of seawater, and other heat applications. It is a 200MWth two-loop low-pressurized water reactor with low thermal parameters. The whole reactor vessel is deployed inside a shielding and cooling pool with thermal insulation measure. The conceptual design of HAPPY is described in this paper, including the design criteria, safety features, main parameters and main components. A preliminary safety analysis is carried out to provide a reference for the design and optimization of HAPPY. In this paper, four different LOCA analyses are described and compared. The results show that the current design can deal well with all the selected LOCA scenarios and the effectiveness of the safety systems is proved.


2021 ◽  
Vol 247 ◽  
pp. 07016
Author(s):  
Carlo Oggioni ◽  
Chris Keckler ◽  
Massimiliano Fratoni

The Autonomous Reactivity Control (ARC) system is a passive safety system aiming to provide an additional negative reactivity feedback during reactor transient scenarios. This paper shows how the performance of the ARC system can be enhanced by introducing a hydraulic diode that allows for different engagement and disengagement speeds of system. The benefits of the proposed system is assessed in a reference soidum-cooled fast reactor (SFR) during multiple postulated transient scenarios. The reactor and plant dynamic response are evaluated using SAS4A/SASSYS-1, whereas for the internal ARC system fluid dynamics, the SAM code is adopted. The two codes are externally coupled using a custom driver script which coordinates data exchange and restart calculations at each time step, with Picard iterations used to converge each time step. All the transients analyzed in this work show that the enhanced ARC system is effective in reducing peak temperatures and in reducing the oscillatory behavior encountered in some cases with the standard ARC system.


Author(s):  
Byong Guk Jeon ◽  
Yeon-Sik Cho ◽  
Hwang Bae ◽  
Yeon-Sik Kim ◽  
Sung-Uk Ryu ◽  
...  

2016 ◽  
Vol 98 ◽  
pp. 191-199 ◽  
Author(s):  
Hassan Nawaz Butt ◽  
Muhammad Ilyas ◽  
Masroor Ahmad ◽  
Fatih Aydogan

Author(s):  
Akira Murase ◽  
Mikihide Nakamaru ◽  
Ryoichi Hamazaki ◽  
Masahiko Kuroki ◽  
Munetaka Takahashi

Considering the delay of the first breeding reactor (FBR), it is expected that the light water reactor will still play the main role of the electric power generation in the 2030’s. Accordingly, Toshiba has been developing a new conceptual ABWR as the near-term BWR. We tentatively call it AB1600. The AB1600 has introduced the hybrid active/passive safety system in order to have independent countermeasure for severe accidents and better probability of core damage frequency (CDF) considered external events such as earthquake. On the other hand, we have another goal of the AB1600, which is to retain the safety performance superior or equivalent to the current ABWR without deterioration of economy. In order to achieve both economy and safety performance, we have optimized the safety system configuration of the AB1600 by partly introducing passive safety system to design basis event (DBEs). At the same time, we have adopted the simplification of the overall plant systems in order to improve economy. In order to reduce capital cost, to shorten refueling period and to reduce maintenance effort, the AB1600 introduces the large fuel bundle size. The bundle size is 1.2 times as large as that of the ABWR and the fuel rod array is 12 by 12. And then by progressing the core design, we can reduce the number of reactor internal pumps (RIPs) to eight from the current ABWR of ten. The core power density, the number of fuel bundles, and the core diameter of AB1600 are decided in order to achieve 24 months fuel cycle length on the condition with below 5wt% enrichment of fuel and with eight RIPs.


Sign in / Sign up

Export Citation Format

Share Document