scholarly journals Adsorption of Crystal Violet Dye Using Zeolite A Synthesized From Coal Fly Ash

Author(s):  
Jumaeri ◽  
E Kusumastuti ◽  
S J Santosa ◽  
Sutarno
2012 ◽  
Vol 190 (1) ◽  
pp. 38-46 ◽  
Author(s):  
Nicholas M. Musyoka ◽  
Leslie F. Petrik ◽  
Eric Hums ◽  
Hasan Baser ◽  
Wilhelm Schwieger

2018 ◽  
Vol 792 ◽  
pp. 140-144
Author(s):  
Jumaeri ◽  
Eko Sri Kunarti

Adsorption of Cr(III) and Cr(VI) in aqueous solution by the zeolite A from coal fly ash at various conditions has been carried out. Zeolite A was synthesized from fly ash through modified alkaline fusion hydrothermal process in a reactor stainless steel. Adsorption is carried out by direct contact between the adsorbent and adsorbate in an adsorption batch. Zeolite A from fly ash (ZA-FA) of 0.01 g was mixed with 20 mL both Cr(III) and Cr(VI) at various pH, contact time and initial concentration, in a flask Erlenmeyer 50 mL. The result showed that pH conditions of adsorption process, affect the adsorption ability of zeolite A to Cr(III) and Cr(VI) in aqueous solution. The adsorption of Cr(III) and Cr(VI) on zeolite A reached a maximum at pH 6 and time contact 120 minutes. The adsorption of Cr(III) on zeolite A increased from 3.4 mg/g at pH 3 and achieved a maximum adsorption of 42.67 mg/g at pH 6. At higher pH (7-8) the Cr(III) adsorption tends decreases. The adsorption ability of ZA-FA to Cr(III) is higher than that of Cr(VI) in aqueous solution. The Cr(III) adsorption process on ZA-FA follows the pseudo-order 2 kinetics model.


2016 ◽  
Vol 31 ◽  
pp. 342-349 ◽  
Author(s):  
Tunde V. Ojumu ◽  
Pieter W. Du Plessis ◽  
Leslie F. Petrik

2018 ◽  
Vol 271 ◽  
pp. 1-8 ◽  
Author(s):  
Ulambayar Rentsenorov ◽  
Batmunkh Davaabal ◽  
Jadambaa Temuujin

Raw coal fly ash and acid pretreated fly ash were used to synthesize A-type zeolite by hydrothermal treatment. In order to synthesize zeolite A an aqueous gel having a molar batch composition of Na2O:Al2O3:1.926SiO2:128H2O was utilized. Fly ash and zeolitic products were characterized by SEM, XRF, XRD and cation exchange capacity (CEC). After hydrothermal treatment, several types of zeolites were formed: zeolite A, analcime, faujasite and hydroxy-sodalite. The highest content of zeolite A was formed in the mixture treated at 80°C for 8 hours. CEC values of the zeolitic products were 28-38 times higher than that of in raw fly ash. Acid pretreatment which leads to low calcium and iron content is preferable method for processing of fly ash for the zeolite synthesis. Synthesized zeolite can be used for ion exchangers for water treatment.


2016 ◽  
Vol 1 (3) ◽  
pp. 145
Author(s):  
Jumaeri Jumaeri ◽  
Juari Santosa ◽  
Sutarno Sutarno ◽  
Ella Kusumastuti

Adsorption of Cr(III) and Cr(VI) in aqueous solution by the zeolite A from coal fly ash modified hexadecyltrimethylammonium bromide (HDTMAB) at various pH conditions has been carried out. Zeolite A was synthesized from fly ash through modified alkaline fusion hydrothermal process in a reactor stainless steel. The surface modification was performed using cationic surfactant HDTMAB twice as much as the cationic exchange capacity of the elite A resulted. The surfactant modified zeolite A was then applied to adsorption the metal ion chromium as Cr(III) and Cr(VI) in aqueous solution. The results showed that the  acidity (pH)  of adsorption conditions, affect the ability of adsorption surfactant modified zeolite A (SMZA) to Cr(III) and Cr(VI) in aqueous solution. The optimum pH conditions for the adsorption of Cr(III) and Cr(VI) on SMZA exist at pH 6. Surfactant modified zeolite A capable to adsorb either cation Cr(III) or anion Cr(VI).  Adsorption of SMZA on Cr(III) increased from 36.30% to 97.04% with the increase the acidity of pH of 2 to 6. Adsorption SMZA to Cr(VI) is lower than the adsorption of the Cr<sup>3+</sup>, adsorption increasing from 19.63 to 64.07% with increase pH of 2 to 6


Sign in / Sign up

Export Citation Format

Share Document