scholarly journals Grey fuzzy logic approach for the optimization of DLC thin film coating process parameters using PACVD technique

Author(s):  
R.K. Ghadai ◽  
P.P. Das ◽  
I. Shivakoti ◽  
S. C. Mondal ◽  
B. P. Swain
2014 ◽  
Vol 939 ◽  
pp. 539-546
Author(s):  
Wei Chu Shu ◽  
Tsai Fang Wu ◽  
Ren Haw Chen ◽  
Kuei Yuan Cheng ◽  
Chih Wei Hsieh

The slot coating process in the production of polymer films has a wide range of applications. However, the process cannot be systemized. This study used the computational fluid dynamics software Polyflow to analyze the slot coating process and investigate the influence that the process parameters have on the characteristics of thin-film coating to reduce the time and cost consumed in the experimental methods. The rheological characteristics of the non-Newtonian fluid used in this study were first identified by conducting experiments, and then configured in the simulation software for fitting with mathematical models. In addition, the models of the slot coating process were constructed, and the Arbitrary Lagrangian-Eulerian (ALE) calculation methods were then used in the Polyflow software. The simulation results were then compared to the experimental results and the findings reported in relevant literature, to determine the influence that the process parameters have on the characteristics of thin-film coating. The simulation results were represented graphically in a coating window plot. The comparison results indicate that the viscosity-shear rate characteristic of the material in the shear rate range of optical film coating is an excellent fit for the Cross Law. When the coating speed is too high or the amount of fluid supply is insufficient, phenomena such as break lines, uneven thickness, and air entrainment can occur.


2001 ◽  
Vol 708 ◽  
Author(s):  
Zhexiong Tang ◽  
Wenguang Li ◽  
Cheryl Nowak ◽  
Sze Yang

ABSTRACTIn this paper, we present the syntheses of the conjugated polymers of different “effective molecular weights.” The goal is to be able to optimize the thin film coating process without compromising the electronic, optical and electroactive properties.Our strategy for controlling the effective molecular weight is to synthesize a double-strand conducting polymer that is an inter-polymer complex of a polymeric dopant and a conjugated polymer. The first strand of the two-strand complex is either a polyaniline or a polypyrrole chain, while the second strand is a poly(acrylic acid). The molecular weight of poly(acrylic acid) is used as a parameter for adjusting the coating and film-forming properties.We found that the inter-polymer complexes are dispersible in water. The dispersion stability is strongly dependent on the molecular weight of the poly(acrylic acid) strand. The dispersion is more stable for polymers synthesized with higher molecular weight of poly(acrylic acid). We also found that the particle size and particle morphology are dependent on the effective molecular weight.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 680 ◽  
Author(s):  
Muhammad Aamir ◽  
Shanshan Tu ◽  
Majid Tolouei-Rad ◽  
Khaled Giasin ◽  
Ana Vafadar

In industries such as aerospace and automotive, drilling many holes is commonly required to assemble different structures where machined holes need to comply with tight geometric tolerances. Multi-spindle drilling using a poly-drill head is an industrial hole-making approach that allows drilling several holes simultaneously. Optimizing process parameters also improves machining processes. This work focuses on the optimization of drilling parameters and two drilling processes—namely, one-shot drilling and multi-hole drilling—using the Taguchi method. Analysis of variance and regression analysis was implemented to indicate the significance of drilling parameters and their impact on the measured responses i.e., surface roughness and hole size. From the Taguchi optimization, optimal drilling parameters were found to occur at a low cutting speed and feed rate using a poly-drill head. Furthermore, a fuzzy logic approach was employed to predict the surface roughness and hole size. It was found that the fuzzy measured values were in good agreement with the experimental values; therefore, the developed models can be effectively used to predict the surface roughness and hole size in multi-hole drilling. Moreover, confirmation tests were performed to validate that the Taguchi optimized levels and fuzzy developed models effectively represent the surface roughness and hole size.


2019 ◽  
Vol 28 ◽  
pp. 01019
Author(s):  
Jacek Zawadzki ◽  
Cezary Jędryczka

Ultrasonic welding has been used in the market over the past thirty years and offer to the manufacturing industries like automotive, aviation, medical and many more due to various hurdles faced by conventional fusion welding or crimp processes. Very short time (less than 1 second) and no additional material during the connection process are very key advantages. Due to this fact this technology can be used for mass production. Plenty of times, the problems faced by industry due to this process are the poor weld quality and strength of the joints surface. In presented study, the process parameters like vibration amplitude, weld pressure and weld time are considered in analysis of the welding of copper wires (Cu- ETP1). Experiment is conducted according to the fractional design with replications to get the responses like tensile shear stress and T-peel stress of the weld. Measured data are utilized next to develop fuzzy logic model between responses and predictors. As a quality is an very important issue in these manufacturing industries, the optimal combinations of studied process parameters are found using fuzzy logic approach.


Sign in / Sign up

Export Citation Format

Share Document