scholarly journals Modeling and analysis of dynamic characteristics of carrier system of machining center in MSC.Adams

Author(s):  
A V Grinek ◽  
A V Rybina ◽  
I P Boychuk ◽  
I M Dantsevich ◽  
A V Hurtasenko
2016 ◽  
Vol 836-837 ◽  
pp. 348-358
Author(s):  
Zhe Li ◽  
Song Zhang ◽  
Yan Chen ◽  
Peng Wang ◽  
Ai Rong Zhang

Dynamic characteristics of numerical control (NC) machine tools, such as natural frequency and vibration property, directly affect machining efficiency and finished surface quality. In general, low-order natural frequencies of critical components have significant influences on machine tool’s performances. The headstock is the most important component of the machine tool. The reliability, cutting stability, and machining accuracy of a machining center largely depend on the structure and dynamic characteristics of the headstock. First, in order to obtain the natural frequencies and vibration characteristics of the headstock of a vertical machining center, modal test and vibration test in free running and cutting conditions were carried out by means of the dynamic signal collection and analysis system. According to the modal test, the first six natural frequencies of the headstock were obtained, which can not only guide the working speed, but also act as the reference of structural optimization aiming at frequency-shift. Secondly, by means of the vibration test, the vibration characteristics of the headstock were obtained and the main vibration sources were found out. Finally the corresponding vibration reduction plans were proposed in this paper. That provides the reference for improving the performance of the overall unit.


2014 ◽  
Vol 1077 ◽  
pp. 191-196
Author(s):  
Yu Hou Wu ◽  
Yu Hang Ren ◽  
De Hong Zhao ◽  
Feng Lu

The column of heavy double turret five-axis horizontal milling complex machining center is taken as the object of study. Solidworks is used to establish three-dimensional model of milling machining center column, the established modal is be imported into ANSYS Workbench for static and dynamic characteristics analysis. First, by comparing the column deformation, the stress and strain under no-load and load conditions, which is concluded that column design is too conservative and be optimized. Secondly, the modal analysis was carried out on the column, which provides a theoretical basis for the optimization of the column by getting the first six natural frequencies and mode shapes of cloud.


2011 ◽  
Vol 52-54 ◽  
pp. 1509-1514
Author(s):  
Wang Yi ◽  
Jian Fu Zhang ◽  
Chao Xu ◽  
Zhi Jun Wu ◽  
Ding Wen Yu

This paper analyzed the dynamic performances of vertical machining center and investigated the problems of dynamiccharacteristics. The modal analysis in both experiment and simulation wascarried out to obtain the modal parameters. The vibrations of the machine spindle were tested to obtain the vibration spectrum under different spindle speeds. It synthesized and compared with the vibration and modal characteristic in order to investigatethe weak parts of the structure. It is concluded that modal characteristic has something to do with the vibration, and there is eccentric between the active rotor and driven rotor. This comprehensive comparison method for dynamic analysis is very effective.


2011 ◽  
Vol 697-698 ◽  
pp. 513-516
Author(s):  
Y.G. Shi ◽  
Xing Yu Zhao ◽  
Li Qiang Zeng ◽  
H.Y. Wang ◽  
Da Wei Zhang

In order to make a 5-axis linkage horizontal machining center have better dynamic characteristics, considering the influence of joint surface, dynamic characteristic analysis is conducted to the machining tool. Based on finite element modal analysis results, the weak link is found and optimized. Through the finite element calculation and analysis, the structure rigidity obviously raises after optimization. This offers a new idea on how to improve the rigidity of complete machine of machining tool for later research.


Author(s):  
Prabhu Raja Venugopal ◽  
M Kalayarasan ◽  
PR Thyla ◽  
PV Mohanram ◽  
Mahendrakumar Nataraj ◽  
...  

Higher damping with higher static stiffness is essential for improving the static and dynamic characteristics of machine tool structures. The structural vibration in conventional machine tools, which are generally made up of cast iron and cast steel, may lead to poor surface finish and the dimensional inaccuracy in the machined products. It leads to the investigation of alternative machine tool structural materials such as concrete, polymer concrete, and epoxy granite. Although epoxy granite has a better damping capacity, its structural stiffness (Young's modulus) is one-third as compared to cast iron. Therefore, the present work represents optimization of the structural design of the vertical machining center column by introducing various designs of steel reinforcement in the epoxy granite structure to improve its static and dynamic characteristics using experimental and numerical approaches. A finite element model of the existing cast iron vertical machining center column has been developed and validated against the experimental data obtained using modal analysis. Furthermore, finite element models for various epoxy granite column designs have been developed and compared with the static and dynamic characteristics of cast iron column. A total of nine design configurations for epoxy granite column with steel reinforcement are evolved and numerical investigations are carried out by finite element analysis. The proposed final configuration with standard steel sections has been modeled using finite element analysis for an equivalent static stiffness and natural frequencies of about 12–20% higher than cast iron structure. Therefore, the proposed finite element model of epoxy-granite-made vertical machining center column can be used as a viable alternative for the existing column in order to achieve higher structural damping, equivalent or higher static stiffness and, easy and environmental-friendly manufacturing process.


2011 ◽  
Vol 697-698 ◽  
pp. 253-257
Author(s):  
Ming Nan Sun ◽  
Guo Fu Yin ◽  
Liang Mi

Machine tool joint stiffness has important affects on the dynamic characteristics of the whole machine tool. It is a challenging task to optimize multi-joint stiffness of the overall structure. By discussing the distribution of stiffness of linear guides, ball screws, bolt joints and bearings, a discrete optimization method of multi-joint stiffness of a machining center was presented based on orthogonal experiment and FEA. Mean frequency formulation was adopted to define the index of orthogonal optimization. According to the principle of orthogonal experiment, optimization levels were found out, sequence of the factors on the index of the orthogonal experiment was listed and significant factors were determined. Results of this research proved the validity and feasibility of the discrete optimization method of multi-joint stiffness of the whole machine tool by combining orthogonal experiment and FEA.


2020 ◽  
Vol 102 (4) ◽  
pp. 2339-2362
Author(s):  
Hesheng Han ◽  
Lihua Tang ◽  
Dengqing Cao ◽  
Lun Liu

Sign in / Sign up

Export Citation Format

Share Document