scholarly journals Experimental study of biogas production using starch-rich food waste at pilot scale

Author(s):  
Huirem Neeranjan Singh ◽  
Thokchom Subhaschandra Singh ◽  
Tikendra Nath Verma
2020 ◽  
Vol 138 ◽  
pp. 105568 ◽  
Author(s):  
Kimberley E. Miller ◽  
Esther Grossman ◽  
Ben J. Stuart ◽  
Sarah C. Davis

2017 ◽  
Vol 65 (51) ◽  
pp. 11237-11242 ◽  
Author(s):  
Chao Huang ◽  
Cheng Zhao ◽  
Hai-Jun Guo ◽  
Can Wang ◽  
Mu-Tan Luo ◽  
...  

Author(s):  
Bilal Khalid Aziz ◽  
Johain Jawdat Faraj ◽  
Fawziea Mohammed Hussien

Author(s):  
Andrés Donoso-Bravo ◽  
Javiera Toledo-Alarcón ◽  
Valentina Ortega ◽  
Valeria Barría ◽  
Yves Lesty ◽  
...  

Abstract Co-digestion of thermally pre-treated sewage sludge with food waste is an innovative strategy that could improve the balance and availability of nutrients needed to increase the efficiency of anaerobic digestion in terms of biogas production. In this context, the aim of this research was to evaluate the impact of different proportions of sewage sludge/food waste in lab and pilot scale reactors. Special focus was placed on the impact of the variability of food waste composition on the behavior of the pilot digester. Our results show that by adding 40% of co-substrate, a higher biogas production was possible during laboratory operation. Interestingly, using a co-substrate of variable composition had no negative impact on the reactor's stability at pilot scale, promoting an increase in biogas production through a more efficient use of organic matter. In both the lab and pilot experiences there was an impact on the amount of nitrogen in the digestate compared to digester operating in monodigestion. This impact is more significant as the proportion of cosubstrate rises. Overall, our results show that co-digestion of thermally pretreated sewage sludge with food waste allows better management of food waste, especially when their composition is variable.


2021 ◽  
Vol 13 (3) ◽  
pp. 1109
Author(s):  
Edgar Ricardo Oviedo-Ocaña ◽  
Angélica María Hernández-Gómez ◽  
Marcos Ríos ◽  
Anauribeth Portela ◽  
Viviana Sánchez-Torres ◽  
...  

The composting of green waste (GW) proceeds slowly due to the presence of slowly degradable compounds in that substrate. The introduction of amendments and bulking materials can improve organic matter degradation and end-product quality. However, additional strategies such as two-stage composting, can deal with the slow degradation of green waste. This paper evaluates the effect of two-stage composting on the process and end-product quality of the co-composting of green waste and food waste amended with sawdust and phosphate rock. A pilot-scale study was developed using two treatments (in triplicate each), one being a two-stage composting and the other being a traditional composting. The two treatments used the same mixture (wet weight): 46% green waste, 19% unprocessed food waste, 18% processed food waste, 13% sawdust, and 4% phosphate rock. The traditional composting observed a higher degradation rate of organic matter during the mesophilic and thermophilic phases and observed thermophilic temperatures were maintained for longer periods during these two phases compared to two-stage composting (i.e., six days). Nonetheless, during the cooling and maturation phases, the two treatments had similar behaviors with regard to temperature, pH, and electrical conductivity, and the end-products resulting from both treatments did not statistically differ. Therefore, from this study, it is concluded that other additional complementary strategies must be evaluated to further improve GW composting.


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2010 ◽  
Vol 150-151 ◽  
pp. 753-757 ◽  
Author(s):  
Xiong Hao Li ◽  
Yong Jie Xue ◽  
Min Zhou

This paper discussed the feasibility of unburned and non-autoclaved, steam cured bricks prepared by FGD byproducts from coal-fired power plants. The results show that FGD byproduct, aggregates, cementious materials and water could be used to prepare bricks during the process of stir and compaction under natural cure and steam cured condition. S4 and Z2 are the optimum design mixture composition. The maximum compressive strength and saturation coefficient are 28.7 MPa and 96.7%. FGD byproducts do no harm to environment and a pilot-scale experiment demonstrates that bricks made with FGDA can meet the MU10 level bricks technical requirement.


Sign in / Sign up

Export Citation Format

Share Document