scholarly journals Research on Optimal Operation Mode for Large-scale Urban Distribution Network Considering Safety Constraints

Author(s):  
Yang Fan ◽  
Yang Lei ◽  
Liu Jun ◽  
Shi Ling ◽  
Tang Haifeng
Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5330
Author(s):  
Aleksandar Dimovski ◽  
Matteo Moncecchi ◽  
Davide Falabretti ◽  
Marco Merlo

The goal of the paper is to develop an online forecasting procedure to be adopted within the H2020 InteGRIDy project, where the main objective is to use the photovoltaic (PV) forecast for optimizing the configuration of a distribution network (DN). Real-time measurements are obtained and saved for nine photovoltaic plants in a database, together with numerical weather predictions supplied from a commercial weather forecasting service. Adopting several error metrics as a performance index, as well as a historical data set for one of the plants on the DN, a preliminary analysis is performed investigating multiple statistical methods, with the objective of finding the most suitable one in terms of accuracy and computational effort. Hourly forecasts are performed each 6 h, for a horizon of 72 h. Having found the random forest method as the most suitable one, further hyper-parameter tuning of the algorithm was performed to improve performance. Optimal results with respect to normalized root mean square error (NRMSE) were found when training the algorithm using solar irradiation and a time vector, with a dataset consisting of 21 days. It was concluded that adding more features does not improve the accuracy when adopting relatively small training sets. Furthermore, the error was not significantly affected by the horizon of the forecast, where the 72-h horizon forecast showed an error increment of slightly above 2% when compared to the 6-h forecast. Thanks to the InteGRIDy project, the proposed algorithms were tested in a large scale real-life pilot, allowing the validation of the mathematical approach, but taking also into account both, problems related to faults in the telecommunication grids, as well as errors in the data exchange and storage procedures. Such an approach is capable of providing a proper quantification of the performances in a real-life scenario.


Author(s):  
Yan Ruan ◽  
Huan Liu ◽  
Jiaona Chen

AbstractDue to the complexity of the large-scale water injection pipe network system and the difficulty of manual analysis, it is impossible to guarantee the optimal operation mode scheme selected. At present, there are still gaps in the research on the judgment of its optimal operation mode. Through the calculation and evaluation of a large amount of water injection system data, the selection method of the optimal operation mode of the water injection system is determined, and it is found that the selection of the optimal operation mode is closely related to the pressure distribution characteristics of the individual wells of the entire water injection system, and five discriminant rules for the optimal operation mode of the water injection system are formed based on these characteristics; the mathematical model for determining the mode and the optimal method of operating parameters is given, and the pipeline network simulation system automatically generates the pipe network topology diagram; the optimal operation mode of the water injection system is developed; Intelligent judgment software can modify its operating parameters according to needs, change operating modes, easily simulate the energy consumption in various modes of operation, adjust and find the optimal operation plan of the water injection pipe network. Application examples show that the judgment rules of the optimal operation mode of the water injection system and the optimization method of operating parameters can be used as an effective means for selecting the optimal operation plan for a large-scale water injection pipeline network.


2021 ◽  
Vol 256 ◽  
pp. 01001
Author(s):  
Xiang Gao ◽  
Lingyan Wei ◽  
Bing Wang ◽  
Guiru Chen ◽  
Xiaoyue Wu

In view of the influence of large-scale electric vehicle access to the distribution network on spatial load prediction, this paper proposes a spatial load prediction method for urban distribution network considering the spatial and temporal distribution of electric vehicle charging load. Firstly, electric vehicles are classified according to charging mode and travel characteristics of various types of vehicles. Secondly, the probability distribution function is fitted to the travel rules of electric vehicles according to the travel survey and statistical data of residents. Then, the model of electric vehicle travel chain is constructed, and the charging load in different regions and different times is calculated by Monte Carlo method. Finally, based on the actual data of a certain area, the predicted spatial load values of different functional communities in one day are obtained, which can provide reference for future urban distribution network planning.


2021 ◽  
Vol 1952 (3) ◽  
pp. 032025
Author(s):  
Simin Luo ◽  
Le Luan ◽  
Yiping Cui ◽  
Shuo Xu ◽  
Qianwen Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document