scholarly journals The research on the operation mode and parameter selection method of large-scale water injection pipeline network

Author(s):  
Yan Ruan ◽  
Huan Liu ◽  
Jiaona Chen

AbstractDue to the complexity of the large-scale water injection pipe network system and the difficulty of manual analysis, it is impossible to guarantee the optimal operation mode scheme selected. At present, there are still gaps in the research on the judgment of its optimal operation mode. Through the calculation and evaluation of a large amount of water injection system data, the selection method of the optimal operation mode of the water injection system is determined, and it is found that the selection of the optimal operation mode is closely related to the pressure distribution characteristics of the individual wells of the entire water injection system, and five discriminant rules for the optimal operation mode of the water injection system are formed based on these characteristics; the mathematical model for determining the mode and the optimal method of operating parameters is given, and the pipeline network simulation system automatically generates the pipe network topology diagram; the optimal operation mode of the water injection system is developed; Intelligent judgment software can modify its operating parameters according to needs, change operating modes, easily simulate the energy consumption in various modes of operation, adjust and find the optimal operation plan of the water injection pipe network. Application examples show that the judgment rules of the optimal operation mode of the water injection system and the optimization method of operating parameters can be used as an effective means for selecting the optimal operation plan for a large-scale water injection pipeline network.

Author(s):  
Yan Ruan ◽  
Xuliang Zhang ◽  
Jiaona Chen

As intelligence technology develops, there is a higher requirement for computing speed and accuracy of water injection system simulation. In this paper, aiming at the tree-shaped water injection pipe network system of large-scale oilfields, based on the energy equation for calculating the pressure drop [Formula: see text] of pipe section, a mathematical model of the pipeline unit and the node unit is established, and finally, a mathematical model of pipe network for the entire water injection system is established; then, the improved iterative algorithm is used to solve the simulation model of water injection system. In this way, we determine the boundary calculation conditions, take the water injection station as reference node, and use the maximum pressure of water injection well as the initial value of the reference node for calculation, which reduces the number of iterations in model calculation; by comparing the simulation results of different iteration steps, 0.01 is selected as the iteration step size due to its higher calculation accuracy; and the calculation process has also been optimized. The process of solving the characteristic matrix [Formula: see text] is combined with the process of calculating the pressure drop [Formula: see text] of pipe section, and placed outside the algorithm loop, thereby shortening the calculation time of a single cycle and reducing the calculation amount of the algorithm. The application cases show that the proposed optimization algorithm for water injection system pipe network simulation can be used as an effective method to improve the solution speed and calculation accuracy of the simulation algorithm of tree-shaped water injection system in large-scale oilfields.


2021 ◽  
Author(s):  
Muhammad Zakwan Mohd Sahak ◽  
Eugene Castillano ◽  
Tengku Amansyah Tuan Mat ◽  
Maung Maung Myo Thant

Abstract For mature fields, water injection is one of the widely deployed techniques to ensure continuous oil recovery from the reservoir by maintaining the reservoir pressure, oil rim and pushing the oil from injection to production wells. Thus, it is critical to ensure a continuous and reliable operation of water injection to have consistent and sustainable rate. This paper demonstrates the new approach, utilizing automation and digital technology providing operational improvement and reduction in unplanned production deferment (UPD). One of the methods to effectively manage the water injection operation is via automation of injection process, especially since most of the water injection facilities still rely heavily on manual operation. First, a discussion on typical water injection technique is discussed. Challenges and sub-optimal operation of water injection processes within the company and industry are analysed. Then, the designing of a fully automated water injection system, such as equipment availability and constraints in matching and responding to well injection requirement are demonstrated. While an immediate adoption of process automation to mature assets may be faced with challenges such as system readiness, hardware availability, capital investment and mindset change, a step-by-step approach such as guided operation and semi-auto operation is explored as preparation prior to a full automation roll-out. With the shift from manual operation reliance to automation, the response time to process changes is improved leading to reduction in near-miss and trip cases, and minimum unplanned deferment.


2012 ◽  
Vol 524-527 ◽  
pp. 1217-1222 ◽  
Author(s):  
Zhi Qiang Huang ◽  
Zhen Chen ◽  
Gang Zheng ◽  
Jian Qiang Xue ◽  
Xue Yuan Li

With the characteristics of low permeability, pressure and abundance, it's extremely hard to exploit the super low permeability reservoirs in ChangQing oil field. For this reason, the water injection recovery technique has been widely used. Analysis showed that a serious problem of high energy consumption exist in the water injection system, the power consumption of which accounts for about 44%. And the energy cost of pump units reach up to 43%, it's the highest energy consumption link in the system. In this paper the load rate classification method (LRCM) is firstly adopted to statistical analyze water injection stations, which are divided into the owing and over load rate stations. As a result, the owing load rate stations accounts for 83.8%, with a serious phenomenon of the Big Horse Pull A Small Carriage, causing the large-scale backflow in the station, and the efficiency is low, the energy consumption is on the high side. Aimed at water injection stations with different load rate, the methods of reasonable shutting down the pumps, pump replacement, optimizing the transmission ratio and piston size, as well as the speed control technology have been used to make the outlet flow and actual demand reasonable matching. The test result shows that the energy saving technology is well targeted, simple, practical and low cost. The pump units’ efficiency improves obviously, the consumption reduces by 10%, which greatly improve the oilfield economic benefits.


Author(s):  
Jun-Kai Wang ◽  
Jing-Lun Li ◽  
Ming-Hsun Wu ◽  
Rong-Horng Chen

The effects of pulsed water injection at the intake port of a modern port fuel injection gasoline engine were investigated. A port water injection system was developed and the water injector was installed on the intake runner of the single cylinder motorcycle engine at a location upstream of the fuel injector. The results show that with a water-gasoline injection ratio of 1, more than 80% of NOx emission can be removed. The trade-off was a 25% reduction in torque output at 4000 rpm and 20% throttle opening; however, the decrease on torque can be controlled to be within 5% by reducing water-gasoline mass ratios to less than 0.6. We also performed NOx emission modeling using one-dimensional gas dynamics code with extended Zeldovich mechanism, and consistent results were found between numerical prediction and experimental measurements. The port water injection approach appears to be an effective means for reducing NOx emission from a gasoline engine at low speed and high load conditions without largely sacrificing the performances on torque output and unburned hydrocarbon emissions.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012003
Author(s):  
Fengjiao Qu ◽  
Tingting Liu ◽  
Zhiming Zhang ◽  
Weiyi Xie ◽  
Yansong Wang ◽  
...  

Abstract The efficiency of oilfield water injection system is generally low and energy consumption is high. With the deepening of oilfield exploitation, the water cut of the oilfield is increasing, the power consumption of the water injection system is increasing year by year, the oilfield exploitation cost is increasing, and energy conservation and consumption reduction are very important. In order to improve oilfield water injection efficiency and reduce water injection energy loss, this paper puts forward the pipe network optimization design method of partial pressure water injection, establishes the mathematical model of partial pressure water injection pipe network and throttling loss calculation model, compiles the calculation software of partial pressure water injection mathematical model, optimizes the partial pressure interval, calculates the partial pressure points, effectively reduces the energy loss of water injection system and improves the efficiency of water injection system.


2017 ◽  
Vol 154 ◽  
pp. 38-48 ◽  
Author(s):  
Haoran Zhang ◽  
Yongtu Liang ◽  
Xingyuan Zhou ◽  
Xiaohan Yan ◽  
Chen Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document