scholarly journals Finite element analysis and experimental research on multi-wheel planetary intermittent type spinning mechanism for internally-externally toothed parts with thin-wall cup-shaped

Author(s):  
Yaming Guo ◽  
Mingzhe Li ◽  
Tao Huang ◽  
Wei Luo ◽  
Bo Lu ◽  
...  
2011 ◽  
Vol 287-290 ◽  
pp. 603-607
Author(s):  
Chun Lin Xia ◽  
Yang Fang Wu ◽  
Qian Qian Lu

Using domestic MFSP membrane as a medium of energy conversion, a kind of MFSP actuator was designed. The dedicated test equipment was constructed for experimental research, and the experimental results were given. The strip and circular MSFP membrane were analyzed qualitatively to obtain the deformation characteristics of membrane by finite element analysis software.


2014 ◽  
Vol 694 ◽  
pp. 279-282
Author(s):  
Qi Liu ◽  
Hang Guo ◽  
Wei Wang ◽  
Yu Ting Wu ◽  
Fang Ye ◽  
...  

In the process of shell design of a 100kW single screw expander, the fundamental research on the screw chamber walls thickness is still lacking. Thin wall may cause deformation and the damage possibility of the inlet passage. Thick wall will increase the weight of the expander and led to assembly problem and transportation inconvenience. In this paper, static finite element analysis on cast shell of the 100 kW single screw expander was carried out. By calculating stress distribution and deformation of the expander shell under 1.5 times of the design pressure, the authors find the thickness of gate rotor chamber walls and inlet passage walls as 15 mm is acceptable, but the thickness of screw chamber walls should be at least 35 mm.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 3968-3981
Author(s):  
Jian Yang ◽  
Shuting Liang ◽  
Xiaojun Zhu ◽  
Longji Dang ◽  
Jialei Wang ◽  
...  

2011 ◽  
Vol 460-461 ◽  
pp. 44-47
Author(s):  
Wei Hua Kuang

The cold expanding diameter process was simulated by the software of DEFORM. The finite element model of tube and dies were built. The object position definition, the inter object setting, movement definition and simulation step were correctly set. The deformation, total velocity distribution and equivalent stress distribution were predicted. The numerical simulation results showed that the finite element analysis could exactly describe the plastic deformation and stress distribution during the forming process.


Sign in / Sign up

Export Citation Format

Share Document