scholarly journals Numerical Simulation of Heat Transfer in GraduallyVarying Microchannel Heat Sink

Author(s):  
Jyoti Pandey ◽  
Mohd. Zahid Ansari ◽  
Afzal Husain
2014 ◽  
Vol 695 ◽  
pp. 403-407 ◽  
Author(s):  
Nur Hazwani Mohamad Noh ◽  
Nor Azwadi Che Sidik

Numerical simulation on 3-dimensional rectangular cross section of microchannel heat sink is conducted to investigate the effect of various type coolant consist of water and different type of nanofluids on the cooling performance of microchannel heat sink. FLUENT, a Computational Fluid Dynamic (CFD) is used as the solver of simulation. A rectangular microchannel with hydraulic diameter of 86um and length of 10mm under the boundary condition of constant heat flux and laminar flow with uniform inlet velocity with five sets of working fluid with different nanofluids. The defined model is validated with previous studies of numerical analysis. Results of present work show that using Diamond-H2O as cooling lead to higher efficiency of heat transfer in microchannel heat sink in comparison to others nanofluid and base fluid. Numerical results show that increasing the thermal conductivity of working fluid can enhanced heat transfer. Nusselt number follows the incremental in Reynolds number.


Author(s):  
Zhiwei Chen ◽  
Peng Qian ◽  
Zizhen Huang ◽  
Chengyuan Luo ◽  
Minghou Liu

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yousef Alihosseini ◽  
Mohammad Reza Azaddel ◽  
Sahel Moslemi ◽  
Mehdi Mohammadi ◽  
Ali Pormohammad ◽  
...  

AbstractIn recent years, PCR-based methods as a rapid and high accurate technique in the industry and medical fields have been expanded rapidly. Where we are faced with the COVID-19 pandemic, the necessity of a rapid diagnosis has felt more than ever. In the current interdisciplinary study, we have proposed, developed, and characterized a state-of-the-art liquid cooling design to accelerate the PCR procedure. A numerical simulation approach is utilized to evaluate 15 different cross-sections of the microchannel heat sink and select the best shape to achieve this goal. Also, crucial heat sink parameters are characterized, e.g., heat transfer coefficient, pressure drop, performance evaluation criteria, and fluid flow. The achieved result showed that the circular cross-section is the most efficient shape for the microchannel heat sink, which has a maximum heat transfer enhancement of 25% compared to the square shape at the Reynolds number of 1150. In the next phase of the study, the circular cross-section microchannel is located below the PCR device to evaluate the cooling rate of the PCR. Also, the results demonstrate that it takes 16.5 s to cool saliva samples in the PCR well, which saves up to 157.5 s for the whole amplification procedure compared to the conventional air fans. Another advantage of using the microchannel heat sink is that it takes up a little space compared to other common cooling methods.


Sign in / Sign up

Export Citation Format

Share Document