scholarly journals Analysis on Combustion Process of a 396 Series Diesel Engine with Flat-top Convex Basin Combustion Chamber

Author(s):  
Yu Liang ◽  
Liying Zhou ◽  
Mingfei Xu ◽  
Guwen Yao
2013 ◽  
Vol 744 ◽  
pp. 35-39
Author(s):  
Lei Ming Shi ◽  
Guang Hui Jia ◽  
Zhi Fei Zhang ◽  
Zhong Ming Xu

In order to obtain the foundation to the research on the Diesel Engine YN4100QB combustion process, exhaust, the optimal design of combustion chamber and the useful information for the design of exhaust muffler, the geometric model and mesh model of a type internal combustion engine are constructed by using FIRE software to analyze the working process of internal combustion engine. Exhaust noise is the main component of automobile noise in the study of controlling vehicle noise. It is primary to design a type of muffler which is good for agricultural automobile engine matching and noise reduction effect. The present car mufflers are all development means. So it is bound to cause the long cycle of product development and waste of resources. Even sometimes not only can it not reach the purpose of reducing the noise but also it leads to reduce the engine dynamic. The strength of the exhaust noise is closely related to engine combustion temperature and pressure. The calculation and initial parameters are applied to the software based on the combustion model and theory. According to the specific operation process of internal combustion engine. Five kinds of common operation condition was compiled. It is obtained for the detailed distribution parameters of combusted gas temperature pressure . It is also got for flow velocity of the fields in cylinder and given for the relation of the parameters and crankshaft angle for the further research. At the same time NOx emissions situation are got. The numerical results show that not only does it provide the 3D distribution data in different crank shaft angle inside the cylinder in the simulation of combustion process, but also it provides a basis for the engine combustion ,emission research, the optimization design of the combustion chamber and the useful information for the designs of muffler.


Author(s):  
M Abu-Qudais ◽  
D. B. Kittelson

The purpose of this research was to investigate the influence of the in-cylinder surfaces on the net emission of the particulate matter in the exhaust of a single cylinder, diesel engine. In order to obtain this information, time-resolved sampling was done to characterize the particulate matter emitted in the engine exhaust. A rotating probe sampled the free exhaust plume once each engine cycle. The rotation of the probe was synchronized with the engine cycle in such a way that the samples could be taken at any predetermined crank angle degree window. The sampling probe was designed for isokinetic sampling in order to obtain reliable results. To characterize the exhaust particulate in real time, a filter for mass concentration measurements was used. The results showed about 45 per cent higher mass concentrations as well as particles of larger diameter emitted during blowdown than late in the displacement phase of the exhaust stroke. This suggests that high in-cylinder shear rates and velocities which are associated with the blowdown process, cause the deposited soot to be re-entrained from the surfaces of the combustion chamber, where re-entrainment is favoured by conditions of high surface shear. A mathematical model to predict the amount of soot re-entrained from the cylinder walls is presented. This model is based on information presented in the literature along with the results of the time-resolved measurements of mass concentration. This model supported the hypothesis of soot deposition during the combustion process, with subsequent re-entrainment during the blowdown process of the exhaust stroke.


2002 ◽  
Vol 125 (1) ◽  
pp. 351-357 ◽  
Author(s):  
Y. Kidoguchi ◽  
M. Sanda ◽  
K. Miwa

Effects of combustion chamber geometry and initial mixture distribution on the combustion process were investigated in a direct-injection diesel engine. In the engine experiment, a high squish combustion chamber with a squish lip could reduce both NOx and particulate emissions with retarded injection timing. According to the results of CFD computation and phenomenological modeling, the high squish combustion chamber with a central pip is effective to keep the combusting mixture under the squish lip until the end of combustion and the combustion region forms rich and highly turbulent atmosphere. This kind of mixture distribution tends to reduce initial burning, resulting in restraint of NOx emission while keeping low particulate emission.


Author(s):  
Yoshiyuki Kidoguchi ◽  
Michiko Sanda ◽  
Kei Miwa

Abstract This study investigated the effect of combustion chamber geometry and initial mixture distribution on combustion process in a direct-injection diesel engine by means of experiment and CFD calculation. The high squish combustion chamber with squish lip could produce simultaneous reduction of NOx and particulate emissions with retarded injection timing in the real engine experiment. According to the CFD computation, the high squish combustion chamber with central pip is effective to continue combustion under the squish lip until the end of combustion and the combustion region forms rich and high turbulence atmosphere, which reduces NOx emissions. This chamber can also reduce initial burning because combustion continues under the squish lip. The CFD computation is also carried out in order to investigate the effect of initial mixture distribution on combustion process. The results suggest that mixture distribution affects the history of heat release rate. When fuel is distributed in the bottom or wide region in the combustion chamber, burned gas tends to spread to the cavity center and initial heat release rate becomes high. On the contrary, the high squish combustion chamber with central pip produces lower initial heat release rate because combustion with local rich condition continues long under the squish lip. Diffusion burning is promoted by high swirl motion in this chamber with keeping lower initial heat release rate.


Author(s):  
Arjan Helmantel ◽  
Joop Somhorst ◽  
Ingemar Denbratt

The effects of variations in injection strategy and swirl on a DI Diesel engine performance and emissions were tested. The cylinder head was fitted with a small diameter endoscope, coupled with a triggered CCD camera, in order to study the effect of these variations on the combustion process. The images that were taken of the combustion process were used to calculate the spatial and temporal distribution of flame temperature and soot kks factor by using the 2-color method. The engine used in the experiments is a single cylinder version of a modern, passenger car type, common rail Diesel engine with a displacement of 480 cc. The fitted endoscope caused very little interference with the combustion chamber due to its small dimensions. The 65 degree angle view of the endoscope allowed coverage of a large portion of the entire combustion chamber. The combustion images and derived temperatures and soot concentrations were used to study the influence of post injection and high swirl. Adding a third (post) injection to the pilot and main injection increases the mixing and the flame temperature during the second half of the combustion process, thereby improving soot oxidation. The fuel efficiency was not negatively affected by the later phasing of part of the heat release. Increased swirl of the intake air was also studied. An 80% increase in swirl-ratio was achieved by closing off one of the two intake ports with a butterfly valve. The improved mixing gave significant reductions in soot emissions, with a small increase in NOx formation.


Author(s):  
Tamer Badawy ◽  
Naeim Henein

The control of the combustion process is becoming a necessity for diesel engines in order to meet the upcoming stringent emission regulations. Ion current sensing technology has the potential to provide real-time feedback of the combustion process while using a fairly inexpensive sensor. 3D computational fluid dynamics (CFD) cycle simulation is becoming more complementary in understanding the complex combustion process in diesel engines. In this paper, a CFD study is focused on investigating the characteristics of the ion current signal produced during the combustion process of a Gen-set turbocharged diesel engine. Multiple virtual ion sensing probes are defined in different locations inside the combustion chamber to understand the influence of sensor location on signal characteristics. The n-heptane reaction mechanism and NO mechanism, combined with an ionization mechanism developed at WSU with 11 species, are used in the model to predict the chemical kinetics of combustion and the mole fraction of ionized species produced during combustion. Since the charge in diesel engines is heterogeneous and due to the sensing nature of the ion sensor, this paper explores the effect of sensor sensing diameter and its protrusion depth inside the combustion chamber on the ion current signal development. The simulation is validated by comparing in-cylinder pressure traces, the rate of heat release, and the ion current signal. Further, the model results are validated under different engine loads and injection pressures. This study utilizes the ionization mechanism to give further understanding of the complex formation of ionization species and their amplitudes, particularly at local sensing locations. This can be very vital to identify the potentials of using the ion current sensing and highlight its viability in feedback closed loop combustion control.


2012 ◽  
Vol 430-432 ◽  
pp. 1742-1746
Author(s):  
Guo Jin Chen ◽  
Zhong Min Liu ◽  
Ting Ting Liu ◽  
Shao Hui Su ◽  
Guang Jie Yuan ◽  
...  

The optimization and matching question for the low-speed diesel engine’s combustion process determines its power, efficiency and emission. But the optimization and matching of the combustion process is related with the fuel injection rule, the intake swirl control, the valve timing adjustment, the combustion chamber structure, the operating condition parameter and so on. This paper takes the 5S60 marine low-speed diesel engine as the study object. The whole running phase oriented model based on the unified multi-domain has established, and the analysis for the diesel engine’s combustion process in cylinder has carried on. The analysis result provides the technical support for the economical, safe and reliable operation of the diesel engine. Thus the combustion process in cylinder is improved, the diesel engine’s performance is enhanced, and the pollutant discharge is reduced.


Sign in / Sign up

Export Citation Format

Share Document