scholarly journals Multi-scale simulation of hybrid light metal structures produced by high pressure die casting

Author(s):  
J Jakumeit ◽  
H Behnken ◽  
R Laqua ◽  
J Eiken ◽  
J Brachmann
2015 ◽  
Vol 825-826 ◽  
pp. 441-448 ◽  
Author(s):  
David Joop ◽  
Simon Heupel ◽  
Christian Schnatterer ◽  
Daniela Zander ◽  
Andreas Bührig-Polaczek

In this study, aluminum sheet metal reinforced magnesium structures have been manufactured by high pressure die casting (HPDC). Selected interfaces of the hybrid structures were analyzed before and after exposure to corrosive environments. The characterization of the as cast bounding surfaces of aluminum sheets and magnesium cast alloys was carried out to quantify the appearance of crevices, which are significantly influencing the extent of the corrosive attack. Depending on the geometrical design of local bonding areas, the observed interface conditions varied from defect-free form closure to crevice widths beyond 35 μm. A minor percentage of the analyzed segments revealed areas of local metallic continuity, detected as intermetallic phases Al3Mg2and Al12Mg17. In order to evaluate acting corrosion mechanisms, hybrid samples featuring the material combinations EN AW 5083 + AZ91 HP and EN AW 6082 + AM50 HP were subjected to immersion tests using 0.1M NaCl solution at a pH of 7.5. The results showed a strong influence by the spread of the potential difference. Alternating corrosion tests (VDA 621-415) were applied to prove effectiveness of cathodic dip coatings (CDP) and wax sealing on standard profile structures, since the uncoated Al-Mg samples sustained severe corrosion damages immediately.


Materials ◽  
2003 ◽  
Author(s):  
Weilong Chen

In recent years, high-pressure die-casting magnesium components have been gaining currency worldwide because of the excellent properties that magnesium alloys can offer to meet new product requirements. With the increasing application of magnesium parts worldwide, many research and development projects have been carried out to advance HPDC technology. However, truly optimized mold design and production of defect free castings remains a challenge for die casters. For many HPDC magnesium products, especially those specified for porosity-free and high cosmetic requirement, the challenge not only comes form a lack of a deeper understanding of how molten magnesium alloys fill the mold cavity and form defects, but also from improper preliminary part design. This study proposes a virtual prototyping system that integrates several effective soft and hardware tools for both the part and mold-design engineer to evaluate part manufacturability. Also, investigated in this study are the major causes of those defects that are the predominant cause of rejection of thin walled, leak-free magnesium parts requiring highly cosmetic finishes.


Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 39
Author(s):  
Anders E. W. Jarfors ◽  
Ruslan Sevastopol ◽  
Karamchedu Seshendra ◽  
Qing Zhang ◽  
Jacob Steggo ◽  
...  

Today, tool life in high pressure die casting (HPDC) is of growing interest. A common agreement is that die life is primarily decided by the thermal load and temperature gradients in the die materials. Conformal cooling with the growth of additive manufacturing has raised interest as a means of extending die life. In the current paper, conformal cooling channels’ performance and effect on the thermal cycle in high-pressure die casting and rheocasting are investigated for conventional HPDC and semisolid processing. It was found that conformal cooling aids die temperature reduction, and the use of die spray may be reduced and support the die-life extension. For the die filling, the increased temperature was possibly counterproductive. Instead, it was found that the main focus for conformal cooling should be focused to manage temperature around the in-let bushing and possibly the runner system. Due to the possible higher inlet pressures for semisolid casting, particular benefits could be seen.


Author(s):  
Rengen Ding ◽  
Haibo Yang ◽  
Shuzhi Li ◽  
Guodong Wu ◽  
Jiahao Mo ◽  
...  

2020 ◽  
Vol 52 ◽  
pp. 144-149
Author(s):  
Alireza Ebrahimi ◽  
Udo Fritsching ◽  
Michael Heuser ◽  
Dirk Lehmhus ◽  
Adrian Struß ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document