semisolid casting
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 12)

H-INDEX

4
(FIVE YEARS 2)

2022 ◽  
Vol 327 ◽  
pp. 172-177
Author(s):  
Toshio Haga ◽  
Shinichiro Imamura ◽  
Ryota Miwa ◽  
Hiroshi Fuse

An aluminum alloy, Al–4.8%Mg–2%Si, was cast by die casting and thixocasting, and the properties of the cast specimens were investigated. When the poured molten metal temperature was lower than 640 °C during die casting, it was lower than the liquidus temperature, and the metal became a semisolid slurry in the sleeve of the die casting machine; this fulfills the conditions for rheocasting. A tension test was conducted to investigate the effects of semisolid casting on the mechanical properties of Al–4.8%Mg–2%Si. The ultimate tensile strength and elongation of the ingots cast by die casting and rheocasting were affected by the size of ingot. When the ingot had a circular base of 4.5 mm diameter, the ultimate tensile strength and elongation were excellent; however, when the cross section of the ingot was a square with a side length of 20 mm, the tensile strength and elongation were inferior. The thixocasting was conducted using square ingots with a side length of 20 mm, and the tensile strength and elongation were poor in this case as well. The results of this study demonstrate that semisolid casting cannot improve the mechanical properties of Al–4.8%Mg–2%Si ingots with a high thickness. Semisolid casting cannot produce fine-grained Mg2Si, and the mechanical properties of the material could not be improved by this casting method.


Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 39
Author(s):  
Anders E. W. Jarfors ◽  
Ruslan Sevastopol ◽  
Karamchedu Seshendra ◽  
Qing Zhang ◽  
Jacob Steggo ◽  
...  

Today, tool life in high pressure die casting (HPDC) is of growing interest. A common agreement is that die life is primarily decided by the thermal load and temperature gradients in the die materials. Conformal cooling with the growth of additive manufacturing has raised interest as a means of extending die life. In the current paper, conformal cooling channels’ performance and effect on the thermal cycle in high-pressure die casting and rheocasting are investigated for conventional HPDC and semisolid processing. It was found that conformal cooling aids die temperature reduction, and the use of die spray may be reduced and support the die-life extension. For the die filling, the increased temperature was possibly counterproductive. Instead, it was found that the main focus for conformal cooling should be focused to manage temperature around the in-let bushing and possibly the runner system. Due to the possible higher inlet pressures for semisolid casting, particular benefits could be seen.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1560
Author(s):  
Anders E. W. Jarfors ◽  
Qing Zhang ◽  
Stefan Jonsson

Semisolid casting can provide excellent castings, but the nature of the pore-forming mechanisms has not been properly clarified. In the current communication, it was suggested that hydrogen precipitated during slurry making might have a decisive role in the formation of both gas and shrinkage porosity. Intensive stirring at the end of the slurry making process may act as a degassing step. Without the intense shearing, structures of primary slurry particles form around the hydrogen pores, strongly affecting pore formation and feeding during the intensification stage.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1368
Author(s):  
Anders E. W. Jarfors

Semisolid casting of aluminium alloys is growing. For magnesium alloys, Thixomoulding became the dominant process around the world. For aluminium processing, the situation is different as semisolid processing of aluminium is more technically challenging than for magnesium. Today three processes are leading the process implementation, The Gas-Induced Superheated-Slurry (GISS) method, the RheoMetal process and the Swirling Enthalpy Equilibration Device (SEED) process. These processes have all strengths and weaknesses and will fit a particular range of applications. The current paper aims at looking at the strengths and weaknesses of the processes to identify product types and niche applications for each process based on current applications and development directions taken for these processes.


Author(s):  
Anders E. W. Jarfors ◽  
Qing Zhang ◽  
and Stefan Jonsson

Semisolid casting can provide excellent castings, but the nature of the pore-forming mechanisms has not been properly clarified. In the current communication, it was suggested that hydrogen precipitated during slurry making might have a decisive role in the formation of both gas and shrinkage porosity. Intensive stirring at the end of the slurry making process may act as a degassing step. Without the intense stirring, structures of primary slurry particles form around the hydrogen pores, strongly affecting pore formation and feeding during the intensification stage.


Semisolid metal (SSM) casting or thixoforming is a technique used to produce near net-shaped products. The process is used with non-ferrous metals, such as aluminium, copper and magnesium. Furthermore, it has advantage over conventional casting due to suppression of dendrite growth. In the present work, the semisolid casting of A319 aluminium alloy has been carried out by using an inclined plate with different melt pouring temperatures (620, 625, 630 and 635 °C). A319 alloy melt undergoes partial solidification when it flows down on an inclined plate. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed or fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. The prepared castings were checked for their mechanical properties like tensile, hardness and impact strength. The results obtained were compared with that of alloy prepared from conventional sand casting. It was found that there is an enhancement in mechanical properties due to shearing off columnar dendrites.


2019 ◽  
Vol 285 ◽  
pp. 3-11 ◽  
Author(s):  
Merton C. Flemings

A summary is given of the history of our understanding of dendrite coarsening, including particularly fragmentation. Much is now understood about this process as it takes place in directional solidification of a quiescent melt. Much less is understood about it in the rapidly cooled, turbulent environment of semi-solid casting. The importance of dendrite fragmentation in semi-solid processing is that it is key to obtaining fine final grain size, grain spheroidicity and rapid production rate. I have chosen in this keynote paper to talk about the fundamentals of an important part of the semisolid casting process ... that of “dendrite fragmentation.” The paper is written with an eye to its possible practical usefulness to researchers in process innovation. If we understood the dendrite fragmentation mechanism better, could we achieve finer, more numerous, grains than we do now? Could fully non dendritic structures be obtained industrially in short processing times?


Sign in / Sign up

Export Citation Format

Share Document