scholarly journals Finite element analysis on effect of different ball spacing in bubble deck lightweight concrete slab

Author(s):  
M Vinod Kumar ◽  
Taha Abou Hamza
Author(s):  
Ane de Boer ◽  
Max A. N. Hendriks ◽  
Eva O. L. Lantsoght

<p>The Dutch Ministry of Infrastructure and the Environment is concerned with the safety of existing infrastructure and expected re-analysis of a large number of bridges and viaducts. Nonlinear finite element analysis can provide a tool to assess safety; a more realistic estimation of the existing safety can be obtained.</p><p>Dutch Guidelines, based on scientific research, general consensus among peers, and a long-term experience with nonlinear analysis, allow for a reduction of model and user factors and improve the robustness of nonlinear finite element analyses.</p><p>The 2017 version of the guidelines can be used for the finite element analysis of basic concrete structural elements like beams, girders and slabs, reinforced or prestressed. Existing structures, like box-girder structures, culverts and bridge decks with prestressed girders in composite structures can be analysed.</p><p>The guidelines have been developed with a two-fold purpose. First, to advice analysts on nonlinear finite element analysis of reinforced and pre-stressed concrete structures. Second, to explain the choices made and to educate analysts, related to the responsibility of limiting model uncertainty.</p><p>This paper contains an overview of the latest version of the guideline and its latest validation extensions. Most important impact is the extended operational lifetime of an existing reinforced concrete slab structure.</p>


2012 ◽  
Vol 166-169 ◽  
pp. 514-519
Author(s):  
Jian Wen Zhang ◽  
Shi Hui Guo

Finite element analysis method of steel reinforced lightweight concrete pull-out specimens is exploded based on the test results. Spring element and local bond slip constitutive relation are introduced in analysis so as to consider the interfacial bond-slip between steel and lightweight concrete. Element tributary area and flange or web position should be taken into account in order to confirm the spring element real constant. Analysis results indicate that specimens bearing capacity and deformation can be well simulated adopting the stated method and constitutive relationship.


Author(s):  
Yalin Liu ◽  
Anton K. Schindler ◽  
James S. Davidson

Extensive cracking was found in several cast-in-place concrete culverts in Alabama. This condition can decrease the long-term durability of the culverts. Early-age stress development in concrete is influenced by temperature changes, modulus of elasticity, stress relaxation, shrinkage, thermal coefficient of expansion, and the degree of restraint. The objective of this study is to determine means to mitigate early-age cracking in culverts by evaluating the cracking risk. Finite-element analysis was used to model the early-age stress by accounting for the following factors: construction sequencing, support restraint, concrete constituents, temperature effects, and the time-dependent development of mechanical properties, creep/relaxation, and drying shrinkage. Experimental results from restraint to volume change tests with rigid cracking frames were used to verify the accuracy of the finite-element analysis. A parametric study was performed to quantify the effect of changing joint spacing, joint type, construction sequence, concrete coefficient of thermal expansion, placement season, and concrete type on the risk of early-age cracking. The finite-element model results revealed that the use of the following measures will reduce the risk of early-age cracking in cast-in-place concrete culverts: concrete with lower coefficient of thermal expansion, contraction joints, sand-lightweight concrete or all-lightweight concrete, and scheduling the casting of the culvert wall to minimize the difference in its placement time relative to its previously cast base. Alternatively, to minimize the contribution of thermal effects on risk of cracking, the construction schedule should be developed to avoid concrete placement during hot weather conditions.


2016 ◽  
Vol 38 (2) ◽  
pp. 61-70
Author(s):  
Michał Wymysłowski ◽  
Zygmunt Kurałowicz

Abstract Steel sheet piles are often used to support excavations for bridge foundations. When they are left in place in the permanent works, they have the potential to increase foundation bearing capacity and reduce displacements; but their presence is not usually taken into account in foundation design. In this article, the results of finite element analysis of a typical abutment foundation, with and without cover of sheet piles, are presented to demonstrate these effects. The structure described is located over the Więceminka river in the town of Kołobrzeg, Poland. It is a single-span road bridge with reinforced concrete slab.


Sign in / Sign up

Export Citation Format

Share Document