scholarly journals Impact of mechanical properties on sheet metal forming processes by using single-point incremental shaping method

Author(s):  
T. Srinivasan ◽  
P. Ramu ◽  
G. Suresh ◽  
Y.S. Govardhan ◽  
S. Srinivasan
2012 ◽  
Vol 504-506 ◽  
pp. 863-868 ◽  
Author(s):  
Miklos Tisza ◽  
Péter Zoltán Kovács ◽  
Zsolt Lukács

Development of new technologies and processes for small batch and prototype production of sheet metal components has a very important role in the recent years. The reason is the quick and efficient response to the market demands. For this reasons new manufacturing concepts have to be developed in order to enable a fast and reliable production of complex components and parts without investing in special forming machines. The need for flexible forming processes has been accelerated during the last 15 years, and by these developments the technology reaches new extensions. Incremental sheet metal forming (ISMF) may be regarded as one of the promising developments for these purposes. A comprehensive research work is in progress at the University of Miskolc (Hungary) to study the effect of important process parameters with particular emphasis on the shape and dimensional accuracy of the products and particularly on the formability limitations of the process. In this paper, some results concerning the determination of forming limit diagrams for single point incremental sheet metal forming will be described.


1999 ◽  
Vol 70 (11) ◽  
pp. 472-479 ◽  
Author(s):  
Wolfgang Bleck ◽  
Joachim Ohlert ◽  
Kostas Papamantellos

Author(s):  
Chetan P. Nikhare

Abstract A substantial increase in demand on the sheet metal part usage in aerospace and automotive industries is due to the increase in the sale of these products to ease the transportation. However, due to the increase in fuel prices and further environmental regulation had left no choice but to manufacture more fuel efficient and inexpensive vehicles. These heavy demands force researchers to think outside the box. Many innovative research projects came to replace the conventional sheet metal forming of which single point incremental forming is one of them. SPIF is the emerging die-less sheet metal forming process in which the single point tool incrementally forces any single point of sheet metal at any processing time to undergo plastic deformation. It has several advantages over the conventional process like high process flexibility, elimination of die, complex shape and better formability. Previous literature provides enormous research on formability of metal during this process, process with various metals and hybrid metals, the influence of various process parameter, but residual formability after this process is untouched. Thus, the aim of this paper is to investigate the residual formability of the formed parts using single point incremental forming and then restrike with a conventional tool. The common process parameters of single point incremental forming were varied, and residual formability was studied through the conventional process. The strain and thickness distribution were measured and analyzed. In addition, the forming limit of the part was plotted and compared.


Author(s):  
Robertt A. F. Valente ◽  
Ricardo J. Alves de Sousa ◽  
António Andrade-Campos ◽  
Raquel de-Carvalho ◽  
Marisa P. Henriques ◽  
...  

This contribution aims to provide a comprehensive overview of some research developments in the field of computational mechanics and numerical simulations applied to metal forming processes. More specifically, this chapter’s goal is to encompass three main fields of research applied to plastic forming processes: (i) the development of alternative finite element formulations for the simulation of sheet metal forming processes; (ii) the development and discussion of distinct optimization procedures and formulations suitable for the characterization of constitutive parameters to be used in numerical simulations, relying on experimental result data; (iii) the study of non-conventional forming processes, particularly the case of single-point incremental forming operations. For each of these topics, a summary of the formulations and main ideas is provided, as well as a list of references for the interested reader. The main goal of this chapter is, therefore, to provide a comprehensive source of information for researchers from both academia and industrial worlds, about some recent achievements and future trends in the numerical simulation field.


2014 ◽  
Vol 622-623 ◽  
pp. 459-466 ◽  
Author(s):  
Michela Simoncini ◽  
Lorenzo Panaccio ◽  
Archimede Forcellese

The present investigation aims at studying post-welding forming operations of friction stir welded AA1050 aluminium thin sheets. A preliminary investigation has allowed to define the rotational and welding speed values leading to friction stir welded joints with high mechanical properties. Then, formability and elastic springback were evaluated using the hemispherical punch and bending tests, respectively. A microstructural investigation has allowed to relate the mechanical properties of joints to microstructure. Finally, the friction stir welded assemblies were subjected to air bending and stamping experiments in order to evaluate their attitude to undergo to sheet metal forming operations.


Author(s):  
Rakesh Lingam ◽  
Anirban Bhattacharya ◽  
Javed Asghar ◽  
N. Venkata Reddy

Incremental Sheet Metal Forming (ISMF) is a flexible sheet metal forming process that enables forming of complex three dimensional components by successive local deformations without using component specific tooling. ISMF is also regarded as die-less manufacturing process and in the absence of part-specific dies, geometric accuracy of formed components is inferior to that of their conventional counterparts. In Single Point Incremental Forming (SPIF), the simplest variant of ISMF, bending near component opening region is unavoidable due to lack of support. The bending in the component opening region can be reduced to a larger extent by another variant of ISMF namely Double Sided Incremental Forming (DSIF) in which a moving tool is used to support the sheet locally at the deformation zone. However the overall geometry of formed components still has unacceptable deviation from the desired geometry. Experimental observation and literature indicates that the supporting tool loses contact with the sheet after forming certain depth. Present work demonstrates a methodology to enhance geometric accuracy of formed components by compensating for tool and sheet deflection due to forming forces. Forming forces necessary to predict compensations are obtained using force equilibrium method along with thickness calculation methodology developed using overlap that occurs during forming (instead of using sine law). Results indicate that there is significant improvement in accuracy of the components produced using compensated tool paths.


Author(s):  
E Hagan ◽  
J Jeswiet

The use of computers in manufacturing has enabled the development of several new metal forming processes that are based upon older technologies. In this case modifications have been made to traditional forming methods such as conventional spinning and shear forming. These two processes are similar in that the deformation mechanism is localized to a small region under the forming tool. Recent advances in computing power have enabled this localized deformation to be accurately controlled and studied. Spinning, shear forming and flow forming are limited to forming parts that are symmetrical about the revolving lathe axis. Current research has been focused on forming non-symmetrical parts using computer numerical control (CNC) technology, without the need for costly dies. A comparison of traditional and modern forming methods is presented here in an attempt to illustrate the evolution of different incremental sheet metal forming techniques. Emphasis is placed on conventional spinning, shear forming and modern computer-controlled forming methods that are currently being studied.


Sign in / Sign up

Export Citation Format

Share Document