Bending and Stamping Processes of FSWed Thin Sheets in AA1050 Alloy

2014 ◽  
Vol 622-623 ◽  
pp. 459-466 ◽  
Author(s):  
Michela Simoncini ◽  
Lorenzo Panaccio ◽  
Archimede Forcellese

The present investigation aims at studying post-welding forming operations of friction stir welded AA1050 aluminium thin sheets. A preliminary investigation has allowed to define the rotational and welding speed values leading to friction stir welded joints with high mechanical properties. Then, formability and elastic springback were evaluated using the hemispherical punch and bending tests, respectively. A microstructural investigation has allowed to relate the mechanical properties of joints to microstructure. Finally, the friction stir welded assemblies were subjected to air bending and stamping experiments in order to evaluate their attitude to undergo to sheet metal forming operations.

1999 ◽  
Vol 70 (11) ◽  
pp. 472-479 ◽  
Author(s):  
Wolfgang Bleck ◽  
Joachim Ohlert ◽  
Kostas Papamantellos

2001 ◽  
Vol 123 (3) ◽  
pp. 329-333 ◽  
Author(s):  
Xinhai Zhu ◽  
Klaus Weinmann ◽  
Abhijit Chandra

The purpose of this study is to determine analytically the orientations of localized necks occurring in sheet metal forming processes, and obtain the corresponding forming limit diagrams (FLDs). In addition to the force equilibrium condition as adopted by other researchers, we include the moment equilibrium in this study. The shear terms due to the perturbation are found to vanish inside the localized neck of a region of deformation. This simplifies the two-dimensional problem to a one-dimensional problem. Furthermore, it is found that there are only three possible orientations for the initiation of a localized neck, i.e., two principal directions and one zero extension direction (which applies only to negative strain ratio deformations). A special case study using the von Mises yield criterion is also presented in this paper. Predictions from our unified analysis matches with the results of Hill, R., 1952, “On Discontinuous Plastic States, With Special Reference to Localized Necking in Thin Sheets,” J. Mech. Phys. Solids, 1, pp. 19–30. For the negative strain ratio regime (left-hand side of the FLDs), and with the results of Storen, S., and Rice, R., 1975, “Localized Necking in Thin Sheets,” J. Mech. Phys. Solids, 23, pp. 421–441. For the positive strain ratio regime (right hand-side of the FLD). When the localized neck is assumed to be in the zero extension direction for the negative strain ratio deformation, deformation theory and flow theory of plasticity give the same limit strains, and a unified solution to the limit strain is obtained. This solution is independent of the specific yield criterion used.


2011 ◽  
Vol 110-116 ◽  
pp. 1437-1441 ◽  
Author(s):  
Farhad Haji Aboutalebi ◽  
Mehdi Nasresfahani

Prediction of sheet metal forming limits or analysis of forming failures is a very sensitive problem for design engineers of sheet forming industries. In this paper, first, damage behaviour of St14 steel (DIN 1623) is studied in order to be used in complex forming conditions with the goal of reducing the number of costly trials. Mechanical properties and Lemaitre's ductile damage parameters of the material are determined by using standard tensile and Vickers micro-hardness tests. A fully coupled elastic-plastic-damage model is developed and implemented into an explicit code. Using this model, damage propagation and crack initiation, and ductile fracture behaviour of hemispherical punch bulging process are predicted. The model can quickly predict both deformation and damage behaviour of the part because of using plane stress algorithm, which is valid for thin sheet metals. Experiments are also carried out to validate the results. Comparison of the numerical and experimental results shows good adaptation. Hence, it is concluded that finite element analysis in conjunction with continuum damage mechanics can be used as a reliable tool to predict ductile damage and forming limit in sheet metal forming processes.


1986 ◽  
Vol 53 (2) ◽  
pp. 440-449 ◽  
Author(s):  
Kuo-Kuang Chen ◽  
D. C. Sun

The existence and consequence of hydrodynamic lubrication in sheet metal forming is demonstrated using a model problem of hemispherical punch stretch forming. The problem is solved by incorporating a lubrication analysis into an incremental plasticity analysis. The sheet material is assumed to be elastic plastic with strain hardening, and the lubricant is assumed isoviscous. The study identifies two dimensionless parameters controlling the condition of lubrication. The resulting variable friction at the punch-sheet interface is found to affect significantly the distribution of strains in the sheet metal and its formability.


Sign in / Sign up

Export Citation Format

Share Document