scholarly journals Evolution of a forming limit curve for non-linear strain paths induced on advanced high-strength sheet steel with its proven applicability to a complex deep-drawing process

Author(s):  
K Chongbunwatana ◽  
S Panich ◽  
K Laokor
2012 ◽  
Vol 504-506 ◽  
pp. 47-52
Author(s):  
Christian Hezler ◽  
Marion Merklein ◽  
Joachim Hecht ◽  
Bernd Griesbach

The evaluation of forming simulation by using the forming limit curve has only limited validity if it is applied on car body components with non-linear strain paths. If modern high strength materials are used, the forming limit criteria can also provide invalid predictions. Especially high strength multiphase steels show a specific behaviour in forming, necking and crack initiation. If bending loads are applied to these materials, the onset of cracking occurs partially not within the range of the forming limit curve (FLC). The stress limit indicates the failure beginning more accurate. It is independent of the forming history and should be less sensitive to the behaviour of high strength steels. In the post processing of a simulation it could be used similar to the forming limit. A limit curve applied on the in-plane-stress-diagram of an analysed component defines areas that are more vulnerable for cracking. The required stress limit curve will be obtained in this research by applying a stretch-bending-test. It is selected in order to reach loads, which are comparable to the forming process in the components’ production. The forming state that is affecting the specimen is a combination of bending and stretching load. Different load conditions can be applied at the test by altering the stamp-radius and the specimen geometry. Since stresses cannot be measured directly in the experiment, the test is modelled in the simulation where the stresses can be calculated for a given material model. Finally the stress limit criterion was applied on the test parts’ stress distribution diagram. Occurring stresses above the stress limit curve are displayed on the simulation. Thereby it is possible to show a good correlation in critical areas between the failure prediction in the simulation and occurring rupture on the test component.


2015 ◽  
Vol 651-653 ◽  
pp. 181-186 ◽  
Author(s):  
Daniela Schalk-Kitting ◽  
Wolfgang Weiß ◽  
Bettina Suhr ◽  
Michael Koplenig

The state of deformation in deep drawing operations is characterized by superimposed stretching and bending (i.e. stretch-bending). Bending effects, especially for Advanced High Strength Steels (AHSS) are known to influence the material formability. Traditional formability measures such as the Forming Limit Curve (FLC) fail to reliably predict stretch-bending formability. Consequently, to ensure an efficient and economical use of AHSS in the industrial application, current research work is focusing on the reliable numerical prediction of stretch-bending formability of AHSS sheets.Within this work, a phenomenological concept to predict the forming limit (e.g. the onset of necking) in deep drawing processes taking bending effects into account is presented. The proposed concept is based on curvature-dependent (i.e. regarding the principle curvatures κ1 and κ2 of the stretch-bend (convex) sheet surface) forming limit surfaces representing the probability of failure and is calibrated with experimental results from stretch-bending tests and conventional forming test such as a Nakazima test. The results of the phenomenological forming limit criterion are promising and show a more accurate prediction of the drawing depth at failure than the conventional FLC approach. The method contributes also to a probabilistic view on the forming limit of deep drawing parts.


2017 ◽  
Vol 751 ◽  
pp. 167-172 ◽  
Author(s):  
Sansot Panich ◽  
Nopparat Seemuang ◽  
Taratip Chaimongkon

In this work, the experimental and numerical analyses of Forming Limit Curve (FLC) and Forming Limit Stress Curve (FLSC) for Advanced High Strength Steel (AHSS) sheet, grade JAC780Y, are performed. Initially, the FLC is experimentally determined by means of the Nakazima Stretch forming test. Subsequently, the FLSC of investigated steel was plastically calculated using the experimental FLC data. Different yield criteria including Hill48, and Yld89, are applied to describe plastic flow behavior of the AHS steel and Swift hardening law is taken into account. Hereby, influences of the constitutive yield models on the numerically determined FLSCs are evaluated regarding to those results from the experimental data. The obtained stress based forming limits are affected significantly by the yield criteria. Finally, the experimental and numerical formability analyses of Fukui stretch-drawing and square cup drawing tests are studied through FLC and FLSCs. It is observed that all stress based curves can be used very well to describe material formability of the examined steel compared to the strain based FLC. The strain based FLC depend on forming history and strain paths change. In the other hand, the stress based FLC do not depend on these issue. In this study, it can be concluded that the FLSCs could predict failure more realistically and better than the strain based FLC.


Author(s):  
Chetan P. Nikhare ◽  
Evan Teculver ◽  
Faisal Aqlan

Abstract The characteristics of metal and materials are very important to design any component so that it should not fail in the life of the service. The properties of the materials are also an important consideration while setting the manufacturing parameters which deforms the raw material to give the design shape without providing any defect or fracture. For centuries the commonly used method to characterize the material is the traditional uniaxial tension test. The standard has been created for this test by American Standard for Testing Materials (ASTM) – E8. This specimen is traditionally been used to test the materials and extract the properties needed for designing and manufacturing. It should be noted that the uniaxial tension test uses one axis to test the material i.e., the material is pulled in one direction to extract the properties. The data acquired from this test found enough for manufacturing operations of simple forming where one axis stretching is dominant. Recently a sudden increase in the usage of automotive vehicles results in sudden increases in fuel consumption which results in an increase in air pollution. To cope up with this challenge federal government is implying the stricter environmental regulation to decrease air pollution. To save from the environmental regulation penalty vehicle industry is researching innovation which would reduce vehicle weight and decrease fuel consumption. Thus, the innovation related to light-weighting is not only an option anymore but became a mandatory necessity to decrease fuel consumption. To achieve this target, the industry has been looking at fabricating components from high strength to ultra-high strength steels or lightweight materials. This need is driven by the requirement of 54 miles per gallon by 2025. In addition, the complexity in design increased where multiple individual parts are eliminated. This integrated complex part needs the complex manufacturing forming operation as well as the process like warm or hot forming for maximum formability. The complex forming process will induce the multi-axial stress states in the part, which is found difficult to predict using conventional tools like tension test material characterization. In many pieces of literature limiting dome height and bulge tests were suggested analyzing these multi-axial stress states. However, these tests limit the possibilities of applying multi-axial loading and resulting stress patterns due to contact surfaces. Thus, a test machine called biaxial test is devised which would provide the capability to test the specimen in multi-axial stress states with varying load. In this paper, two processes, limiting dome test and biaxial test were experimented to plot the forming limit curve. The forming limit curve serves the tool for the design of die for manufacturing operation. For experiments, the cruciform test specimens were used in both limiting dome test and biaxial test and tested at elevated temperatures. The forming limit curve from both tests was plotted and compared. In addition, the strain path, forming, and formability was investigated and the difference between the tests was provided.


2020 ◽  
Vol 299 ◽  
pp. 628-633 ◽  
Author(s):  
S.I. Feoktistov ◽  
Kyaw Zayar Soe

The paper describes a method which has been developed for obtaining the limiting drawing ratio of titanium and aluminum alloys, and determines the moment of failure of the work-piece. This method is based not only on the use of Forming Limit Diagram (FLD) in predicting the failure of the blank, but also the using method of variable parameters of elasticity in determining the stress-strain state in deep drawing process.


2020 ◽  
Vol 846 ◽  
pp. 117-121
Author(s):  
Min Sik Lee ◽  
Jun Park ◽  
J.S.Suresh Babu ◽  
Chung Gil Kang

In this paper, hot and cold deep drawing processes are determined with direct deep drawing process and indirect deep drawing process. To predict the friction coefficient, the finite-element method, which can predict deformation behavior until the fracture of a blank sheet, was proposed using the forming limit diagram (FLD) curve. The effect of fracturing of the coating layer on the friction coefficient during the hot and cold deep drawing processes was investigated. The deformation behavior of the coating layer of the boron steel sheet that affects the friction coefficient in the hot and cold deep drawing processes was also proposed. A forming method that can control the surface condition of the formed product is further proposed by explaining the fracture of the coating due to the forming process.


Sign in / Sign up

Export Citation Format

Share Document