scholarly journals REDSHIFT EVOLUTION OF THE GALAXY VELOCITY DISPERSION FUNCTION

2011 ◽  
Vol 737 (2) ◽  
pp. L31 ◽  
Author(s):  
Rachel Bezanson ◽  
Pieter G. van Dokkum ◽  
Marijn Franx ◽  
Gabriel B. Brammer ◽  
Jarle Brinchmann ◽  
...  
1988 ◽  
Vol 126 ◽  
pp. 663-664
Author(s):  
G. Meylan

The southern sky gives us the great opportunity to observe two among the brightest and nearest globular clusters of the Galaxy: ω Cen and 47 Tuc. For these giant clusters, we present the comparison between observations and King-Michie multi-mass dynamical models with anisotropy in the velocity dispersion. A more comprehensive description of this work is to be published (Meylan 1986a,b).


2006 ◽  
Vol 2 (S235) ◽  
pp. 230-230
Author(s):  
Ivelina Momcheva ◽  
Kurtis Williams ◽  
Ann Zabludoff ◽  
Charles Keeton

AbstractPoor groups are common and interactive environments for galaxies, and thus are important laboratories for studying galaxy evolution. Unfortunately, little is known about groups at z ≥ 0.1, because of the difficulty in identifying them in the first place. Here we present results from our ongoing survey of the environments of strong gravitational lenses, in which we have so far discovered six distant (z ≥ 0.5) groups of galaxies. As in the local Universe, the highest velocity dispersion groups contain a brightest member spatially coincident with the group centroid, whereas lower-dispersion groups tend to have an offset brightest group galaxy. This suggests that higher-dispersion groups are more dynamically relaxed than lower-dispersion groups and that at least some evolved groups exist by z ~ 0.5. We also compare the galaxy and hot gas kinematics with those of similarly distant clusters and of nearby groups.


2007 ◽  
Vol 3 (S245) ◽  
pp. 181-184
Author(s):  
Genevieve J. Graves

AbstractWe present recent results showing that a large fraction of red sequence galaxies contain ionized gas with LINER-like optical emission line ratios. This emission is more frequently found in galaxies with lower central velocity dispersion (σ) and these galaxies typically have younger mean ages than galaxies at the same σ which do not host emission. We suggest that the presence of LINER-like emission may be determined by the quantity of interstellar material in these galaxies and may be associated with the recent accretion of a gas-rich satellite galaxy or alternatively with stellar mass loss that declines as the galaxy stellar population ages.


1987 ◽  
Vol 117 ◽  
pp. 112-112
Author(s):  
D. Gerbal ◽  
G. Mathez ◽  
A. Mazure ◽  
E. Salvadore-Solé

The study of the dynamics of the Coma Cluster is of interest for several reasons. First, there exists a great deal of observational information about the cluster, including data on morphology, magnitude, color and redshift for the galaxies, and reasonably detailed x-ray data for the hot gas. Second, the present dynamical state of the cluster is reasonably well-defined. In addition, the segregation of the more luminous (≡ massive) galaxies towards the cluster center shows that two-body relaxation effects are well-advanced (Capelato et al. 1980). The profile of velocity dispersion with radius shows that in the outer parts of the cluster the galaxy velocities are non-isothermal (des Forêts et al. 1984). There is, however, evidence of continuing dynamical evolution. The velocity field of the galaxies at large distances from the center of the cluster suggests continuing infall (Capelato et al. 1982), and two sub-condensations are located in the inner regions (Mazure and Proust 1986). A new dynamical analysis for the cluster is being carried out in two stages. First, a relaxed model with a wide mass spectrum (c.f. Inagaki 1980) is fitted to the data. The contribution of the intergalactic gas is taken into account. With HO = 75 km/sec/Mpc, the total mass within a 3° radius of the center is ∼ 1.5 × 1015 M⊙, of which ∼ 30% is in the intergalactic medium, and M/L ∼ 75 M⊙/L⊙. The ratio of specific energies of the galaxies and the gas is ∼ 1.1, i.e., there is no scale-height problem (these results are described more fully by Gerbal et al. 1986). A second “model independent” analysis using the profiles of the galactic density and velocity dispersion gives the radial dependence of the galactic mass, the gas mass and also gives the total mass, which is found to be ∼ 1.1 × 1015 M⊙ within 3° (Gerbal et al. 1984).


1996 ◽  
Vol 169 ◽  
pp. 511-512
Author(s):  
H. Dejonghe ◽  
S. Durand ◽  
A. Acker ◽  
F. Chambat

The dynamical modeling of various tracer populations in our galaxy is an important tool in the study of its formation and evolution. Planetary Nebulae (PNe) seem to be particularly useful for such a study. In this contribution we attempt to link the dynamics of PNe and OH/IR stars, and confirm on dynamical grounds that both classes are indeed related by stellar evolution. Moreover, we show that 2 integrals of motion are probably not sufficient to characterize the dynamical state of the PNe: the models produce a velocity dispersion which is too low, pointing at the likely presence of a third integral.


2011 ◽  
Vol 20 (2) ◽  
Author(s):  
Piotr Flin ◽  
Monika Biernacka ◽  
Włodzimierz Godłowski ◽  
Elena Panko ◽  
Paulina Piwowarska

AbstractWe analysed some properties of galaxies structures based on the PF catalog of galaxy structures (Panko & Flin 2006) and the Tully NBG catalog (Tully 1988). At first, we analyzed the orientation of galaxies in the 247 optically selected rich Abell clusters, having at least 100 members. The distribution of the position angles of galaxies as well as of two angles describing spatial orientation of the galaxy planes were tested for isotropy, applying three statistical tests. We found the relation between the anisotropy and the cluster richness. The relation between the galaxy alignment and the Bautz-Morgan morphological type of the parent cluster is not present. A statistically marginal relation between the velocity dispersion and cluster richness is observed. We also analyzed ellipticities for 6188 low redshift (z < 0.18) poor and rich galaxy structures which have been examined along with their evolution. Finally, we analyzed the Binggeli effect and found that the orientation of galaxy groups in the Local Supercluster (LSC), is strongly correlated with the distribution of neighbouring groups in the scale up to about 20 Mpc. Analysis of galaxy structures from the PF catalog shows quite different situation - the efect is observed only for more elongated structures (e ≤ 0.3). The effect is present in a distance range of about 60 h


2000 ◽  
Vol 536 (1) ◽  
pp. 112-121 ◽  
Author(s):  
Jonathan E. Baker ◽  
Marc Davis ◽  
Huan Lin

Sign in / Sign up

Export Citation Format

Share Document