scholarly journals Green synthesis of silver nanoparticles by using carambola fruit extract and their antibacterial activity

Author(s):  
S J Mane Gavade ◽  
G H Nikam ◽  
R S Dhabbe ◽  
S R Sabale ◽  
B V Tamhankar ◽  
...  
2021 ◽  
Author(s):  
Shirisha A ◽  
ANUMOLU VIJAYA KUMAR ◽  
Laxman Chatlod R ◽  
Shashi Kumar M ◽  
Krishnaiah N ◽  
...  

Abstract The present study mainly deals with the green synthesis, characterization and evaluation of antibacterial properties of silver nanoparticles (AgNPs) synthesized by using the leaf extract of Moringa oleifera and fruit extract of Tamarindus indica. In this study for synthesis of silver nanoparticles different ratios of 1mM silver nitrate and Moringa oleifera leaf extract i.e, 95:5, 90:10 and 85: 15 was taken in conical flask and kept for one 1 hr at 25 0 c on magnetic stirrer, out of which 90:10 ratio was selected for further study based on highest peak, good size and stability. Tamarindus indica fruit extract was added to silver nitrate solution till the colour of the solution changes from light brown to chocolate brownish colour. The synthesized silver nanoparticles were characterized by UV-Visible spectroscopy, Zeta potential, size distribution by intensity. The absorption spectrum of the silver nano solution prepared by using Moringa oleifera and Tamarindus indica fruit extract showed a surface plasmon absorption band with maximum of 420 nm and 430 nm respectively indicating the presence of silver nanoparticles. The zeta value of silver nanoparticles synthesized from Moringa oleifera and Tamarindus indica fruit extract was -12.5 mV and -15.5 mV, size of 110.2 nm and 130.2 nm respectively. The antibacterial efficacy of nanosilver was checked by agar well diffusion method, and the silver nanoparticles showed effective antibacterial activity against Staphylococcus aureus.


2019 ◽  
Vol 9 (3) ◽  
pp. 76-81 ◽  
Author(s):  
Pratibha Jinesh Shah ◽  
Ruchi Malik

Objective: Phyllanthus emblica L. or amla is known for its therapeutic properties. The aim of the present study was to evaluate the antibacterial activity of aqueous Phyllanthus emblica fruit extract (APE) against eight pathogenic cultures and its application in green synthesis of silver nanoparticles. Methods: APE was screened for the presence of phytochemicals and its antibacterial activity was evaluated by agar well diffusion assay. The minimum inhibitory concentration (MIC) was quantified by broth macrodilution technique, and minimum bactericidal concentration (MBC) was determined. Further, APE was used in the biological synthesis of silver nanoparticles (AgNPs), which were characterized by an Ultraviolet–visible (UV-VIS) spectroscopy and Field emission gun-scanning electron microscopy (FEG-SEM) techniques. The antibacterial activity of the AgNPs was screened by agar well diffusion assay. Results: The zone of inhibition (ZOI) for APE was found to be in the range of 10.7–21.3 mm, for varying concentrations. The MIC values were in the range of 12.5% - 50% (v/v) and the MBC values indicated that a concentration of 50% (v/v) APE could kill 75% (6/8) test cultures. The presence of AgNPs was confirmed by UV-VIS spectroscopy and the surface-plasmon resonance peak was observed at 420 nm. The FEG-SEM analysis revealed that the most of AgNPs were spherical in shape and had 30-40 nm size range. All the test cultures were inhibited by the AgNPs and the average ZOI measured 19.25±2.7 mm. Conclusion: Phyllanthus emblica fruit extract might have therapeutic significance against pathogens and it can be used for green synthesis of silver nanoparticles. Keywords: Phyllanthus emblica, MIC, MBC, silver nanoparticles, UV-VIS, FEG-SEM.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susanna Gevorgyan ◽  
Robin Schubert ◽  
Mkrtich Yeranosyan ◽  
Lilit Gabrielyan ◽  
Armen Trchounian ◽  
...  

AbstractThe application of green synthesis in nanotechnology is growing day by day. It’s a safe and eco-friendly alternative to conventional methods. The current research aimed to study raw royal jelly’s potential in the green synthesis of silver nanoparticles and their antibacterial activity. Royal jelly served as a reducing and oxidizing agent in the green synthesis technology of colloidal silver nanoparticles. The UV–Vis maximum absorption at ~ 430 nm and fluorescence emission peaks at ~ 487 nm confirmed the presence of Ag NPs. Morphology and structural properties of Ag NPs and the effect of ultrasound studies revealed: (i) the formation of polydispersed and spherical particles with different sizes; (ii) size reduction and homogeneity increase by ultrasound treatment. Antibacterial activity of different concentrations of green synthesized Ag NPs has been assessed on Gram-negative S. typhimurium and Gram-positive S. aureus, revealing higher sensitivity on Gram-negative bacteria.


2015 ◽  
Vol 33 (5) ◽  
pp. 445-455 ◽  
Author(s):  
Kiran Jadhav ◽  
Dinesh Dhamecha ◽  
Bhagyashree Dalvi ◽  
Mrityunjaya Patil

Sign in / Sign up

Export Citation Format

Share Document