Colour-optimized quantum yields of Yb, Tm Co-doped upconversion nanocrystals

2019 ◽  
Vol 7 (2) ◽  
pp. 024001 ◽  
Author(s):  
Marco Kraft ◽  
Christian Würth ◽  
Emilia Palo ◽  
Tero Soukka ◽  
Ute Resch-Genger
2021 ◽  
Vol 9 (15) ◽  
pp. 5148-5153
Author(s):  
Shiteng Wang ◽  
Chunguang Zhang ◽  
Wei Zheng ◽  
Zhongliang Gong ◽  
Ping Huang ◽  
...  

A strategy based on S2−-to-Yb3+ charge transfer sensitization is developed to achieve efficient NIR luminescence in Yb3+ singly-doped and Yb3+/Er3+ co-doped NaGdS2 nanocrystals with quantum yields up to 21.2% and 25.0%, respectively.


ACS Omega ◽  
2018 ◽  
Vol 3 (12) ◽  
pp. 17814-17820 ◽  
Author(s):  
Huilin He ◽  
Ying Zhang ◽  
Yong Li ◽  
Lihong Wang ◽  
Xian Gao ◽  
...  

Nano Research ◽  
2021 ◽  
Author(s):  
Bettina Grauel ◽  
Christian Würth ◽  
Christian Homann ◽  
Lisa Krukewitt ◽  
Elina Andresen ◽  
...  

AbstractDespite considerable advances in synthesizing high-quality core/shell upconversion (UC) nanocrystals (NC; UCNC) and UCNC photophysics, the application of near-infrared (NIR)-excitable lanthanide-doped UCNC in the life and material sciences is still hampered by the relatively low upconversion luminescence (UCL) of UCNC of small size or thin protecting shell. To obtain deeper insights into energy transfer and surface quenching processes involving Yb3+ and Er3+ ions, we examined energy loss processes in differently sized solid core NaYF4 nanocrystals doped with either Yb3+ (YbNC; 20% Yb3+) or Er3+ (ErNC; 2% Er3+) and co-doped with Yb3+ and Er3+ (YbErNC; 20% Yb3+ and 2% Er3+) without a surface protection shell and coated with a thin and a thick NaYF4 shell in comparison to single and co-doped bulk materials. Luminescence studies at 375 nm excitation demonstrate back-energy transfer (BET) from the 4G11/2 state of Er3+ to the 2F5/2 state of Yb3+, through which the red Er3+4F9/2 state is efficiently populated. Excitation power density (P)-dependent steady state and time-resolved photoluminescence measurements at different excitation and emission wavelengths enable to separate surface-related and volume-related effects for two-photonic and three-photonic processes involved in UCL and indicate a different influence of surface passivation on the green and red Er3+ emission. The intensity and lifetime of the latter respond particularly to an increase in volume of the active UCNC core. We provide a three-dimensional random walk model to describe these effects that can be used in the future to predict the UCL behavior of UCNC.


2017 ◽  
Vol 122 (1) ◽  
pp. 252-259 ◽  
Author(s):  
Ian N. Stanton ◽  
Jennifer A. Ayres ◽  
Joshua T. Stecher ◽  
Martin C. Fischer ◽  
Dan Scharpf ◽  
...  

2008 ◽  
Author(s):  
Xiaomei Guo ◽  
Kewen Kevin. Li ◽  
Xuesheng Chen ◽  
Yingyin Kevin. Zou ◽  
Hua Jiang

2020 ◽  
Author(s):  
Weihong Lai ◽  
Heng Wang ◽  
Quan jiang ◽  
Zichao Yan ◽  
Hanwen Liu ◽  
...  

<p>Herein, we develop a non-selective charge compensation strategy to prepare multi-single-atom doped carbon (MSAC) in which a sodium p-toluenesulfonate (PTS-Na) doped polypyrrole (S-PPy) polymer is designed to anchor discretionary mixtures of multiple metal cations, including iron (Fe<sup>3+</sup>), cobalt (Co<sup>3+</sup>), ruthenium (Ru<sup>3+</sup>), palladium (Pd<sup>2+</sup>), indium (In<sup>3+</sup>), iridium (Ir<sup>2+</sup>), and platinum (Pt<sup>2+</sup>) . As illustrated in Figure 1, the carbon surface can be tuned with different level of compositional complexities, including unary Pt<sub>1</sub>@NC, binary (MSAC-2, (PtFe)<sub>1</sub>@NC), ternary (MSAC-3, (PtFeIr)<sub>1</sub>@NC), quaternary (MSAC-4, (PtFeIrRu)<sub>1</sub>@NC), quinary (MSAC-5, (PtFeIrRuCo)<sub>1</sub>@NC), senary (MSAC-6, (PtFeIrRuCoPd)<sub>1</sub>@NC), and septenary (MSAC-7, (PtFeIrRuCoPdIn)<sub>1</sub>@NC) samples. The structural evolution of carbon surface dictates the activities of both ORR and HER. The senary MSAC-6 achieves the ORR mass activity of 18.1 A·mg<sub>metal</sub><sup>-1</sup> at 0.9 V (Vs reversible hydrogen electrode (RHE)) over 30K cycles, which is 164 times higher than that of commercial Pt/C. The quaternary MSAC-4 presented a comparable HER catalytic capability with that of Pt/C. These results indicate that the highly complexed carbon surface can enhance its ability over general electrochemical catalytic reactions. The mechanisms regarding of the ORR and HER activities of the alternated carbon surface are also theoretically and experimentally investigated in this work, showing that the synergistic effects amongst the co-doped atoms can activate or inactivate certain single-atom sites.</p>


2020 ◽  
Author(s):  
Thomas Baumgartner ◽  
Paul Demay-Drouhard

The unexpectedly challenging synthesis of 4-pyridyl-extended dithienophospholes is reported. The optical and electrochemical properties of the phosphoryl-bridged species were studied experimentally and computationally, and their properties compared to their non-<i>P</i>-bridged congeners. The 4-pyridyl-extended dithieno-phospholes display quantitative luminescence quantum yields in solution.<br><br>


2020 ◽  
Author(s):  
Thomas Baumgartner ◽  
Paul Demay-Drouhard

The unexpectedly challenging synthesis of 4-pyridyl-extended dithienophospholes is reported. The optical and electrochemical properties of the phosphoryl-bridged species were studied experimentally and computationally, and their properties compared to their non-<i>P</i>-bridged congeners. The 4-pyridyl-extended dithieno-phospholes display quantitative luminescence quantum yields in solution.<br><br>


Sign in / Sign up

Export Citation Format

Share Document