Magnetic field driven quantum critical phase transition in Ce$_{3}$Al

2014 ◽  
Vol 1 (4) ◽  
pp. 046114 ◽  
Author(s):  
Durgesh Singh ◽  
Sankararao Yadam ◽  
D Venkateshwarlu ◽  
Mohan Gangrade ◽  
S Shanmukharao Samatham ◽  
...  
2020 ◽  
Vol 102 (21) ◽  
Author(s):  
Raymond Wiedmann ◽  
Lea Lenke ◽  
Matthias R. Walther ◽  
Matthias Mühlhauser ◽  
Kai Phillip Schmidt

2014 ◽  
Vol 10 (11) ◽  
pp. 840-844 ◽  
Author(s):  
S. Kambe ◽  
H. Sakai ◽  
Y. Tokunaga ◽  
G. Lapertot ◽  
T. D. Matsuda ◽  
...  

2015 ◽  
Vol 91 (16) ◽  
Author(s):  
S. Kambe ◽  
H. Sakai ◽  
Y. Tokunaga ◽  
G. Lapertot ◽  
T. D. Matsuda ◽  
...  

2014 ◽  
Vol 29 (20) ◽  
pp. 1450094 ◽  
Author(s):  
Ya-Bo Wu ◽  
Jun-Wang Lu ◽  
Yong-Yi Jin ◽  
Jian-Bo Lu ◽  
Xue Zhang ◽  
...  

In the probe limit, we study the holographic p-wave phase transition in the Gauss–Bonnet gravity via numerical and analytical methods. Concretely, we study the influences of the external magnetic field on the Maxwell complex vector model in the five-dimensional Gauss–Bonnet–AdS black hole and soliton backgrounds, respectively. For the two backgrounds, the results show that the magnetic field enhances the superconductor phase transition in the case of the lowest Landau level, while the increasing Gauss–Bonnet parameter always hinders the vector condensate. Moreover, the Maxwell complex vector model is a generalization of the SU(2) Yang–Mills model all the time. In addition, the analytical results backup the numerical results. Furthermore, this model might provide a holographic realization for the QCD vacuum instability.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750046
Author(s):  
Yan Peng ◽  
Tao Chen ◽  
Guohua Liu ◽  
Pengwei Ma

We generalize the holographic superconductor model with dark matter sector by including the Stückelberg mechanism in the four-dimensional anti-de Sitter (AdS) black hole background away from the probe limit. We study effects of the dark matter sector on the [Formula: see text]-wave scalar condensation and find that the dark matter sector affects the critical phase transition temperature and also the order of phase transitions. At last, we conclude that the dark matter sector brings richer physics in this general metal/superconductor system.


2012 ◽  
Vol 26 (28) ◽  
pp. 1250183 ◽  
Author(s):  
VLADIMIR NAZAROV ◽  
RISHAT SHAFEEV

Theoretically, with the aid of a soliton model, the evolution of a new-phase nucleus near the first-order spin-reorientation phase transition in magnets has been investigated in an external magnetic field. The influence of an external field and one-dimensional defects of magnetic anisotropy on the dynamics of such nucleus has been demonstrated. The conditions for the localization of the new-phase nucleus in the region of the magnetic anisotropy defect and for its escape from the defect have been determined. The values of the critical fields which bring about the sample magnetization reversal have been identified and estimated.


2007 ◽  
Vol 310 (2) ◽  
pp. 1352-1354 ◽  
Author(s):  
F. Yamada ◽  
T. Ono ◽  
M. Fujisawa ◽  
H. Tanaka ◽  
T. Sakakibara

2000 ◽  
Vol 76 (1) ◽  
pp. 37-39 ◽  
Author(s):  
Yanwei Ma ◽  
S. Awaji ◽  
K. Watanabe ◽  
M. Matsumoto ◽  
N. Kobayashi

Sign in / Sign up

Export Citation Format

Share Document