scholarly journals Fabrication and mechanical characterization of YAG ceramic-composite with alumina nanoparticles using slip casting and sintering process

2020 ◽  
Vol 7 (11) ◽  
pp. 115010
Author(s):  
M Torki ◽  
B Movahedi ◽  
S Ghazanfari ◽  
M Milani
2020 ◽  
Author(s):  
Mohammad Torki ◽  
behrooz movahedi ◽  
S S. ghazanfari ◽  
M. Milani

Abstract The aim of this study was to fabricate YAG/Al2O3 ceramic composites with different alumina nanoparticles using slip casting and the atmospheric sintering process. In addition, some mechanical properties such as hardness and elastic modules of this novel ceramics were evaluated using the nanoindention technique. The results showed that the rheological behavior of the slurry was optimized to the solid loading of 55 wt% and the relative density of the green body was enhanced up to 65%. Relative density was increased after sintering at 1700 °C for 12 h to 99.5% and the pore size (150 nm) was reduced to half of that of powder particles. It should be noted that the optimum amount of alumina nanoparticles as a reinforcing agent in the matrix was less than 5%wt and the composite hardness was increased to 7.3%, as compared to the pure YAG ceramic.


2017 ◽  
Vol 62 (4) ◽  
pp. 2045-2049 ◽  
Author(s):  
P. Łada ◽  
A. Miazga ◽  
P. Bazarnik ◽  
K. Konopka

AbstractIn this work the microstructure analysis of composite from ZrO2– Ti system were presented. For the preparation of the composite samples nanometric ZrO2powder stabilized by 3 mol% of Y2O3and micrometric titanium powder were used. The composites with 10 vol.% addition of titanium particles were prepared by slip casting method. The sintering process was conducted at 1450°C with 2 hours’ dwell time, in the inert atmosphere of argon. The microstructure observations were carried out with the use of SEM and STEM microscopes. The quantitative analysis and stereological characterization were performed. The SEM and STEM observations allowed characterizing the microstructure of composite samples. Especially, the interface between titanium particles and zirconia matrix was described. The growth of the zirconia grains around the Ti rich areas was observed. The increase of the zirconia grains size results from the reaction on the interface between titanium particle and zirconia matrix during the sintering process.


2011 ◽  
Vol 324 ◽  
pp. 177-180 ◽  
Author(s):  
Bassem Mouawad ◽  
Maher Soueidan ◽  
Damien Fabrègue ◽  
Cyril Buttay ◽  
Vincent Bley ◽  
...  

Bonding of high purity polished copper was investigated using the Spark Plasma Sintering technique (SPS) showing the effect of SPS parameters (surface roughness, time, temperature and pressure) on the bonding strength behaviour. Mechanical characterization of the bonded samples was performed at room temperature using tensile test. Two surfaces roughnesses were studied (un-polished and polished samples). It was found that the bonding strength varied from 50 MPa to 233 MPa for un-polished and polished surfaces respectively The tensile strength of the used bulk copper-rod was found to be 365 MPa, while most results are over 122 MPa (a third of the bulk value).


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


2017 ◽  
Vol 5 (3) ◽  
pp. 8
Author(s):  
KUMAR DINESH ◽  
KAUR ARSHDEEP ◽  
AGGARWAL YUGAM KUMAR ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document