scholarly journals Dynamic behavior of molten pool flow field for active laser welded-thick stainless steel plates

Author(s):  
Li Fang Mei ◽  
Shun Xie ◽  
Dongbing Yan ◽  
Zhiqin Lei ◽  
Wei Yin ◽  
...  
Author(s):  
Rachel T. Backes ◽  
David T. McMillan ◽  
Andrew M. Herring ◽  
John R. Berger ◽  
John A. Turner ◽  
...  

The process of stamping stainless steel bipolar plates is developed from initial plate design through manufacturing and use in a fuel cell stack. A stamped design incorporating a serpentine flow field for the cathode and an interdigitated flow field for the anode is designed. This bipolar plate consists of only one piece of thin stainless steel sheet. The process of rubber-pad stamping was chosen to reduce shearing of the thin sheet. Dies were designed and made. Stainless steel plates were stamped, but stress were higher than anticipated and die failure was observed. The plates were tested both in-situ and by doing simulated fuel cell testing. Although sealing was an issue due to lack of proper gaskets and endplates, tests determined that the stamped bipolar plates will work in a PEM fuel cell stack. Dies were redesigned to improve durability. Gaskets and endplates were designed to complete the stack construction.


2021 ◽  
Vol 33 (2) ◽  
pp. 022019
Author(s):  
D.-B. Yan ◽  
L.-F. Mei ◽  
P.-Z. Li ◽  
Z.-Q. Lei ◽  
S. Xie ◽  
...  

2014 ◽  
Vol 121 ◽  
pp. 415-420 ◽  
Author(s):  
Xiuwan Li ◽  
Dan Li ◽  
Zhiwei Wei ◽  
Xiaonan Shang ◽  
Deyan He

2021 ◽  
Vol 115 ◽  
pp. 103686
Author(s):  
Jian Long ◽  
Lin-Jie Zhang ◽  
Jie Ning ◽  
Suck-Joo Na

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 103
Author(s):  
Rodrigo Jiménez-Pichardo ◽  
Iriana Hernández-Martínez ◽  
Carlos Regalado-González ◽  
José Santos-Cruz ◽  
Yunny Meas-Vong ◽  
...  

Biofilms on food-contact surfaces can lead to recurrent contamination. This work aimed to study the biofilm formation process on stainless steel plates used in the dairy industry: 304 surface finish 2B and electropolished; and the effect of a cleaning and disinfection process using alkaline (AEW) and neutral (NEW) electrolyzed water. Milk fouling during heat processing can lead to type A or B deposits, which were analyzed for composition, surface energy, thickness, and roughness, while the role of raw milk microbiota on biofilm development was investigated. Bacteria, yeasts, and lactic acid bacteria were detected using EUB-338, PF2, and Str-493 probes, respectively, whereas Lis-637 probe detected Listeria sp. The genetic complexity and diversity of biofilms varied according to biofilm maturation day, as evaluated by 16S rRNA gene sequence, denaturing gradient gel electrophoresis, and fluorescence in situ hybridization microscopy. From analysis of the experimental designs, a cleaning stage of 50 mg/L NaOH of AEW at 30 °C for 10 min, followed by disinfection using 50 mg/L total available chlorine of NEW at 20 °C for 5 min is a sustainable alternative process to prevent biofilm formation. Fluorescence microscopy was used to visualize the effectiveness of this process.


Author(s):  
Irene Carmagnola ◽  
Tiziana Nardo ◽  
Francesca Boccafoschi ◽  
Valeria Chiono

The stainless steel (SS) stents have been used in clinics since 1994. However, typical drawbacks are restenosis and thrombus formation due to limited endothelialisation and hemocompatibility. Surface modification is a smart strategy to enhance antithrombogenicity by promoting endothelialisation. In this work, the layer-by-layer (LbL) technique was applied for coating SS model substrates, after surface priming by functionalisation with 3-aminopropyl triethoxysilane (APTES). A LbL coating made of 14 layers of poly(styrene sulfonate)/poly(diallyldimethylammonium chloride) and heparin as last layer was deposited. FTIR-ATR analysis and contact angle measurements showed that LbL was an effective method to prepare nanostructured coatings. XPS analysis and colorimetric assay employing 1,9-dimethylmethylene blue dye to detect -COOH groups confirmed the successful polyelectrolyte deposition on the coated samples. Preliminary in vitro cell tests, using whole blood and human platelets, were performed to evaluate how surface modification affects platelet activation. Results showed that SS and SS-APTES surfaces induced platelet activation, as indicated by platelet spreading and filopodia formation. After surface modification by LbL coating, the platelets assumed a round shape and no fibrin nets were detected. Data demonstrated that LbL coating is a promising technique to fabricate antithrombogenic surface.


Sign in / Sign up

Export Citation Format

Share Document