scholarly journals Innovative Control of Biofilms on Stainless Steel Surfaces Using Electrolyzed Water in the Dairy Industry

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 103
Author(s):  
Rodrigo Jiménez-Pichardo ◽  
Iriana Hernández-Martínez ◽  
Carlos Regalado-González ◽  
José Santos-Cruz ◽  
Yunny Meas-Vong ◽  
...  

Biofilms on food-contact surfaces can lead to recurrent contamination. This work aimed to study the biofilm formation process on stainless steel plates used in the dairy industry: 304 surface finish 2B and electropolished; and the effect of a cleaning and disinfection process using alkaline (AEW) and neutral (NEW) electrolyzed water. Milk fouling during heat processing can lead to type A or B deposits, which were analyzed for composition, surface energy, thickness, and roughness, while the role of raw milk microbiota on biofilm development was investigated. Bacteria, yeasts, and lactic acid bacteria were detected using EUB-338, PF2, and Str-493 probes, respectively, whereas Lis-637 probe detected Listeria sp. The genetic complexity and diversity of biofilms varied according to biofilm maturation day, as evaluated by 16S rRNA gene sequence, denaturing gradient gel electrophoresis, and fluorescence in situ hybridization microscopy. From analysis of the experimental designs, a cleaning stage of 50 mg/L NaOH of AEW at 30 °C for 10 min, followed by disinfection using 50 mg/L total available chlorine of NEW at 20 °C for 5 min is a sustainable alternative process to prevent biofilm formation. Fluorescence microscopy was used to visualize the effectiveness of this process.

2018 ◽  
Vol 81 (4) ◽  
pp. 582-592 ◽  
Author(s):  
HYE RI JEON ◽  
MI JIN KWON ◽  
KI SUN YOON

ABSTRACT Biofilm formation on food contact surfaces is a potential hazard leading to cross-contamination during food processing. We investigated Listeria innocua biofilm formation on various food contact surfaces and compared the washing effect of slightly acidic electrolyzed water (SAEW) at 30, 50, 70, and 120 ppm with that of 200 ppm of sodium hypochlorite (NaClO) on biofilm cells. The risk of L. innocua biofilm transfer and growth on food at retail markets was also investigated. The viability of biofilms that formed on food contact surfaces and then transferred cells to duck meat was confirmed by fluorescence microscopy. L. innocua biofilm formation was greatest on rubber, followed by polypropylene, glass, and stainless steel. Regardless of sanitizer type, washing removed biofilms from polypropylene and stainless steel better than from rubber and glass. Among the various SAEW concentrations, washing with 70 ppm of SAEW for 5 min significantly reduced L. innocua biofilms on food contact surfaces during food processing. Efficiency of transfer of L. innocua biofilm cells was the highest on polypropylene and lowest on stainless steel. The transferred biofilm cells grew to the maximum population density, and the lag time of transferred biofilm cells was longer than that of planktonic cells. The biofilm cells that transferred to duck meat coexisted with live, injured, and dead cells, which indicates that effective washing is essential to remove biofilm on food contact surfaces during food processing to reduce the risk of foodborne disease outbreaks.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1216
Author(s):  
Mayssane Hage ◽  
Hikmat Akoum ◽  
Nour-Eddine Chihib ◽  
Charafeddine Jama

Emerging technology regarding antimicrobial coatings contributes to fighting the challenge of pathogenic bacterial biofilms in medical and agri-food environments. Stainless steel is a material widely used in those fields since it has satisfying mechanical properties, but it, unfortunately, lacks the required bio-functionality, rendering it vulnerable to bacterial adhesion and biofilm formation. Therefore, this review aims to present the coatings developed by employing biocides grafted on stainless steel. It also highlights antimicrobial peptides (AMPs)used to coat stainless steel, particularly nisin, which is commonly accepted as a safe alternative to prevent pathogenic biofilm development.


1993 ◽  
Vol 56 (9) ◽  
pp. 750-758 ◽  
Author(s):  
AMY B. RONNER ◽  
AMY C. L. WONG

Biofilm formation by seven strains of Listeria monocytogenes and one strain of Salmonella typhimurium on stainless steel and Buna-n rubber was examined under two nutrient conditions. The type of surface, nutrient level, and organism influenced biofilm development and production of extracellular materials. Buna-n had a strong bacteriostatic effect on L. monocytogenes, and biofilm formation on Buna-n under low nutrient conditions was reduced for four of the seven strains tested. Buna-n was less bacteriostatic toward S. typhimurium. It inhibited the growth of several other pathogens to varying degrees. An ethylene propylene diamine monomer rubber was less inhibitory than Buna-n, and Viton rubber had no effect. The effectiveness of sanitizers on biofilm bacteria was examined. Biofilms were challenged with four types of detergent and nondetergent sanitizers. Resistance to sanitizers was strongly influenced by the type of surface. Bacterial biofilm populations on stainless steel were reduced 3–5 log by all the sanitizers, but those on Buna-n were resistant to these sanitizers and were reduced less than 1–2 log. In contrast, planktonic (suspended) bacteria were reduced 7–8 log by these sanitizers. Chlorine and anionic acid sanitizers generally removed extracellular materials from biofilms better than iodine and quaternary ammonium detergent sanitizers. Scanning electron microscopy demonstrated that biofilm cells and extracellular matrices could remain on sanitized biofilm cells and extracellular matrices could remain surfaces from which no viable cells were recovered.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1150
Author(s):  
Jean Pierre González-Gómez ◽  
Berenice González-Torres ◽  
Pedro Javier Guerrero-Medina ◽  
Osvaldo López-Cuevas ◽  
Cristóbal Chaidez ◽  
...  

Biofilm formation by E. coli is a serious threat to meat processing plants. Chemical disinfectants often fail to eliminate biofilms; thus, bacteriophages are a promising alternative to solve this problem, since they are widely distributed, environmentally friendly, and nontoxic to humans. In this study, the biofilm formation of 10 E. coli strains isolated from the meat industry and E. coli ATCC BAA-1430 and ATCC 11303 were evaluated. Three strains, isolated from the meat contact surfaces, showed adhesion ability and produced extracellular polymeric substances. Biofilms of these three strains were developed onto stainless steel (SS) surfaces and enumerated at 2, 12, 24, 48, and 120 h, and were visualized by scanning electron microscopy. Subsequently, three bacteriophages showing podovirus morphology were isolated from ground beef and poultry liver samples, which showed lytic activity against the abovementioned biofilm-forming strains. SS surfaces with biofilms of 2, 14, and 48 h maturity were treated with mixed and individual bacteriophages at 8 and 9 log10 PFU/mL for 1 h. The results showed reductions greater than 6 log10 CFU/cm2 as a result of exposing SS surfaces with biofilms of 24 h maturity to 9 log10 PFU/mL of bacteriophages; however, the E. coli and bacteriophage strains, phage concentration, and biofilm development stage had significant effects on biofilm reduction (p < 0.05). In conclusion, the isolated bacteriophages showed effectiveness at reducing biofilms of isolated E. coli; however, it is necessary to increase the libraries of phages with lytic activity against the strains isolated from production environments.


1972 ◽  
Vol 35 (6) ◽  
pp. 332-334
Author(s):  
M. E. Anderson ◽  
J. R. Fischer ◽  
R. T. Marshall ◽  
D. B. Brooker ◽  
T. F. Webb

Stainless steel plates were soiled with milk and skim milk, and the films were dried before being rinsed or rinsed and cleaned in a spray-type apparatus. Rinsing was practically completed after 30 sec and cleaning after 1 min of spraying. There was no significant difference in amounts of soil remaining on plates which had been sprayed for 17 min with detergent solutions tempered to either 35 or 62.8 C.


1979 ◽  
Vol 42 (8) ◽  
pp. 631-637 ◽  
Author(s):  
R. C. MABESA ◽  
R. T. MARSHALL ◽  
M. E. ANDERSON

Rinsability of milk films on stainless steel was impaired by exposure to 100% relative humidity (RH). Rinsability was determined by automated Lowry protein tests of detergent used to remove films. Residue of milk films was 1% of the initial soil load when dried on stainless steel plates without humidification, but was 6.35% of the initial load after drying (30 min), humidification (15 min) and redrying (30 min) all at 37 C. Three successive exposures to 100% RH for 7.5 min at 37 C, each followed by 30 min of drying, yielded a residue of nearly 30% of the initial soil load. Exposure at 37 C produced the maximum amount of residue on plates. Experimental temperatures ranged from 0 to 75 C. Temperature of milk applied to plates was of little importance. Raw milk formed more tenacious film than skim milk or major components of milk. Milk produced during colder months yielded less soluble films than milk produced during warmer months. Lowering of milk pH to 5.7, adding soluble calcium, and aging milk at 0 C increased residues. Chelation of soluble calcium with EDTA or dissociation of milk protein with sodium dodecyl sulfate decreased soil residue levels. Exposure of instantized nonfat dry milk to the high humidity treatment decreased its solubility more than tenfold.


2008 ◽  
Vol 74 (20) ◽  
pp. 6348-6357 ◽  
Author(s):  
Marie-Claude Julien ◽  
Patrice Dion ◽  
Carole Lafrenière ◽  
Hani Antoun ◽  
Pascal Drouin

ABSTRACT A PCR-denaturing gradient gel electrophoresis (DGGE) method was used to examine on-farm sources of Clostridium cluster I strains in four dairy farms over 2 years. Conventional microbiological analysis was used in parallel to monitor size of clostridial populations present in various components of the milk production chain (soil, forage, grass silage, maize silage, dry hay, and raw milk). PCR amplification with Clostridium cluster I-specific 16S rRNA gene primers followed by DGGE separation yielded a total of 47 operational taxonomic units (OTUs), which varied greatly with respect to frequency of occurrence. Some OTUs were found only in forage, and forage profiles differed according to farm location (southern or northern Québec). More clostridial contamination was found in maize silage than in grass silage. Milk represented a potential environment for certain OTUs. No OTU was milk specific, indicating that OTUs originated from other environments. Most (83%) of the OTUs detected in raw milk were also found in grass or maize silage. Milk DGGE profiles differed according to farm and sampling year and fit into two distinct categories. One milk profile category was characterized by the presence of a few dominant OTUs, the presence of which appeared to be more related to farm management than to feed contamination. OTUs were more varied in the second profile category. The identities of certain OTUs frequently found in milk were resolved by cloning and sequencing. Clostridium disporicum was identified as an important member of clostridial populations transmitted to milk. Clostridium tyrobutyricum was consistently found in milk and was widespread in the other farm environments examined.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
María-Guadalupe Avila-Novoa ◽  
Maricarmen Iñíguez-Moreno ◽  
Oscar-Alberto Solís-Velázquez ◽  
Jean-Pierre González-Gómez ◽  
Pedro-Javier Guerrero-Medina ◽  
...  

Staphylococcus aureus is an important food-borne pathogen able to form biofilms. This pathogen is responsible for outbreaks of food-borne illnesses associated with the consumption of milk and dairy products. The aim of this study was to evaluate the biofilm-forming ability of S. aureus isolates, recovered from food contact surfaces in the dairy industry of Jalisco, Mexico. A total of 84 S. aureus strains were evaluated. The isolates were characterized phenotypically by culture on Congo red agar plates. The ability of the strains to form biofilms was investigated in 96-well flat-bottomed microtiter polystyrene plates. Stainless-steel coupons were used as an experimental surface. Biofilm formation was observed, using epifluorescence microscopy and scanning electron microscopy. Detection of the icaADBC genes in S. aureus was performed by the PCR technique. A total of 52.3% (44/84) of the S. aureus strains contained the icaADBC gene that synthesizes polysaccharide intercellular adhesion (PIA) molecules. On Congo red agar, 75% (63/84) of the S. aureus isolates were biofilm producers, 16.6% (14/84) were non-biofilm formers, and 8.3% (7/84) showed a noncharacteristic phenotype. The biofilm production of the S. aureus strains SA-4E, SA-9, SA-13, and SA-19 on stainless-steel coupons was investigated at 25°C for 8 days, and the detected cell population density was approximately 7.15–7.82 log CFU cm−2. In addition to the ability of biofilm production, it is important to highlight that these strains are potential enterotoxin producers as se genes have been previously detected in their genomes. A part of the ability of biofilm production and the determination of the presence of virulence determinants in the genome of S. aureus can contribute to the pathogenicity of strains. Therefore, vigilant food safety practices need to be implemented in the dairy industries regarding FCS to prevent food-borne infections and intoxications due to S. aureus contamination.


2015 ◽  
Vol 81 (20) ◽  
pp. 7271-7280 ◽  
Author(s):  
O. Auguet ◽  
M. Pijuan ◽  
J. Batista ◽  
C. M. Borrego ◽  
O. Gutierrez

ABSTRACTThe coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H2S) and methane (CH4) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H2S and CH4production and emission rates during different stages of biofilm development in relation to changes in the composition of microbial biofilm communities. The study was carried out in a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer using a combination of process data and molecular techniques (e.g., quantitative PCR [qPCR], denaturing gradient gel electrophoresis [DGGE], and 16S rRNA gene pyrotag sequencing). After 2 weeks of biofilm growth, H2S emission was notably high (290.7 ± 72.3 mg S-H2S liter−1day−1), whereas emissions of CH4remained low (17.9 ± 15.9 mg COD-CH4liter−1day−1). This contrasting trend coincided with a stable SRB community and an archaeal community composed solely of methanogens derived from the human gut (i.e.,MethanobrevibacterandMethanosphaera). In turn, CH4emissions increased after 1 year of biofilm growth (327.6 ± 16.6 mg COD-CH4liter−1day−1), coinciding with the replacement of methanogenic colonizers by species more adapted to sewer conditions (i.e.,Methanosaetaspp.). Our study provides data that confirm the capacity of our laboratory experimental system to mimic the functioning of full-scale sewers both microbiologically and operationally in terms of sulfide and methane production, gaining insight into the complex dynamics of key microbial groups during biofilm development.


Food Control ◽  
2016 ◽  
Vol 60 ◽  
pp. 320-328 ◽  
Author(s):  
Rodrigo Jiménez-Pichardo ◽  
Carlos Regalado ◽  
Eduardo Castaño-Tostado ◽  
Yunny Meas-Vong ◽  
José Santos-Cruz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document