scholarly journals Fundamental sensitivity bounds for quantum enhanced optical resonance sensors based on transmission and phase estimation

Author(s):  
Mohammadjavad Dowran ◽  
Timothy S. Woodworth ◽  
Ashok Kumar ◽  
Alberto Marino

Abstract Quantum states of light can enable sensing configurations with sensitivities beyond the shot-noise limit (SNL). In order to better take advantage of available quantum resources and obtain the maximum possible sensitivity, it is necessary to determine fundamental sensitivity limits for different possible configurations for a given sensing system. Here, due to their wide applicability, we focus on optical resonance sensors, which detect a change in a parameter of interest through a resonance shift. We compare their fundamental sensitivity limits set by the quantum Cramér-Rao bound (QCRB) based on the estimation of changes in transmission or phase of a probing bright two-mode squeezed state (bTMSS) of light. We show that the fundamental sensitivity results from an interplay between the QCRB and the transfer function of the system. As a result, for a resonance sensor with a Lorentzian lineshape a phase-based scheme outperforms a transmission-based one for most of the parameter space; however, this is not the case for lineshapes with steeper slopes, such as higher order Butterworth lineshapes. Furthermore, such an interplay results in conditions under which the phase-based scheme provides a higher sensitivity but a smaller degree of quantum enhancement than the transmission-based scheme. We also study the effect of losses external to the sensor on the degree of quantum enhancement and show that for certain conditions, probing with a classical state can provide a higher sensitivity than probing with a bTMSS. Finally, we discuss detection schemes, namely optimized intensity-difference and optimized homodyne detection, that can achieve the fundamental sensitivity limits even in the presence of external losses.

2016 ◽  
Vol 41 (17) ◽  
pp. 3932 ◽  
Author(s):  
Guofeng Zhang ◽  
Hanjie Zhu

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Gaetano Frascella ◽  
Sascha Agne ◽  
Farid Ya. Khalili ◽  
Maria V. Chekhova

AbstractAmong the known resources of quantum metrology, one of the most practical and efficient is squeezing. Squeezed states of atoms and light improve the sensing of the phase, magnetic field, polarization, mechanical displacement. They promise to considerably increase signal-to-noise ratio in imaging and spectroscopy, and are already used in real-life gravitational-wave detectors. But despite being more robust than other states, they are still very fragile, which narrows the scope of their application. In particular, squeezed states are useless in measurements where the detection is inefficient or the noise is high. Here, we experimentally demonstrate a remedy against loss and noise: strong noiseless amplification before detection. This way, we achieve loss-tolerant operation of an interferometer fed with squeezed and coherent light. With only 50% detection efficiency and with noise exceeding the level of squeezed light more than 50 times, we overcome the shot-noise limit by 6 dB. Sub-shot-noise phase sensitivity survives up to 87% loss. Application of this technique to other types of optical sensing and imaging promises a full use of quantum resources in these fields.


1989 ◽  
Vol 43 (8) ◽  
pp. 1337-1341 ◽  
Author(s):  
Xiaobing Xi ◽  
Edward S. Yeung

To optimize the performance of a laser-based polarimeter, a mathematical simulation was performed. High-modulation currents allow a corresponding increase in signal. However, the effect of ohmic heating puts an upper limit on the power input to the solenoid. With this constraint, one can systematically choose the wire diameter and the number of turns per unit length. An experimental verification of the optimized parameters provided performance approaching the shot-noise limit. By using higher modulation currents, one can operate at 1 kHz to achieve detectability in the microdegree range, without the complications of high-frequency (100 kHz) modulation.


2013 ◽  
Vol 111 (3) ◽  
Author(s):  
Emanuele Distante ◽  
Miroslav Ježek ◽  
Ulrik L. Andersen

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
W. Wang ◽  
Y. Wu ◽  
Y. Ma ◽  
W. Cai ◽  
L. Hu ◽  
...  

Abstract Two-mode interferometers lay the foundations for quantum metrology. Instead of exploring quantum entanglement in the two-mode interferometers, a single bosonic mode also promises a measurement precision beyond the shot-noise limit (SNL) by taking advantage of the infinite-dimensional Hilbert space of Fock states. Here, we demonstrate a single-mode phase estimation that approaches the Heisenberg limit (HL) unconditionally. Due to the strong dispersive nonlinearity and long coherence time of a microwave cavity, quantum states of the form $$\left( {\left| 0 \right\rangle + \left| N \right\rangle } \right)/\sqrt 2$$ 0 + N ∕ 2 can be generated, manipulated and detected with high fidelities, leading to an experimental phase estimation precision scaling as ∼N−0.94. A 9.1 dB enhancement of the precision over the SNL at N = 12 is achieved, which is only 1.7 dB away from the HL. Our experimental architecture is hardware efficient and can be combined with quantum error correction techniques to fight against decoherence, and thus promises quantum-enhanced sensing in practical applications.


2019 ◽  
Vol 12 (4) ◽  
Author(s):  
Euan J. Allen ◽  
Giacomo Ferranti ◽  
Kristina R. Rusimova ◽  
Robert J.A. Francis-Jones ◽  
Maria Azini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document