Biomechanics of skin grafts: effect of pattern size, spacing and orientation

Author(s):  
Vivek Gupta ◽  
Arnab Chanda

Abstract Skin graft expansion is the key to the treatment of severe burn injuries requiring skin transplantation. While high expansions have been claimed by a majority of graft manufacturers, the realistic expansions reported to date with skin grafts are much lower. To clarify this discrepancy, we attempted to understand the biomechanics of skin grafts through the study of common graft pattern sizes, spacing, and orientation, and their influence on mesh expansion and induced stress. A novel skin simulant material and additive manufacturing were employed to develop the skin graft models. Tensile testing experiments were conducted to study expansion and overall stresses, and a finite element model (FEM) was used to characterize the local trends. At low strains (i.e., <1), the mesh expansion ratio was reported to be below 1, which increased up to 1.93 at a high strain of 2. The pattern size and spacing were not observed to affect the expansion much (i.e., <10%). With a change in orientation, the expansion decreased across all graft models and strains. High localized induced stresses were reported for high strains, which varied with graft orientation. The novel observations highlight the achievable expansions without overstressing, with standard slit patterning in skin grafts. These findings will not only help achieve better mesh expansion outcomes in burn surgeries but also guide the development of novel graft patterns for enhanced expansion in the future.

Author(s):  
Vivek Gupta ◽  
Arnab Chanda

Abstract Severe burn injures lead to millions of fatalities every year due to lack of skin replacements. While skin is a very limited and expensive entity, split thickness skin grafting, which involves the projection of a parallel incision pattern on a small section of healthy excised skin, is typically employed to increase the expansion and cover a larger burn site. To date, the real expansion capacity of such grafts are low (<3 times) and insufficient for treatment of severe burn injuries. In this study, novel I-shaped auxetic incision patterns, which are known to exhibit high negative Poisson’s ratios, have been tested on the skin to investigate their expansion potential. Fourteen two-layer skin graft models with varying incision pattern parameters (i.e., length, spacing, and orientation) were developed using finite element modelling and tested under uniaxial and biaxial tensile loads. The Poisson’s ratio, meshing ratios, and induced stresses were quantified across all models. Graft models tested uniaxially along the orthogonal directions indicated opposite trends in generated Poisson’s ratios, as the length of the I-shape incisions were increased. Biaxially, with a symmetric and closely spaced I-shape pattern, graft meshing ratios up to 15.65 were achieved without overstressing the skin. Overall, the findings from the study indicated that expansion potentials much higher than that of traditional skin grafts can be achieved with novel I-shaped auxetic skin grafts, which would be indispensable for covering large wounds in severe burn injuries.


2021 ◽  
pp. 35-38
Author(s):  
Siobhan O’Ceallaigh ◽  
Mamta Shah

Skin grafts are an option for closing skin defects that cannot be closed primarily. A skin graft consists of epidermis and a portion of the underlying dermis that is detached from its blood supply and transferred to another location, usually on the same individual (an autograft). Skin grafts can also be used from cadaver donors (allografts) in extensive burn injuries, but as the recipient’s immune system will eventually reject this foreign tissue, this is only a temporary measure.


2020 ◽  
Vol 10 (8) ◽  
pp. 2790
Author(s):  
Wenzheng Zhuang ◽  
Chao Yang ◽  
Zhigang Wu

Hybrid corrugated sandwich (HCS) plates have become a promising candidate for novel thermal protection systems (TPS) due to their multi-functionality of load bearing and thermal protection. For hypersonic vehicles, the novel TPS that performs some structural functions is a potential method of saving weight, which is significant in reducing expensive design/manufacture cost. Considering the novel TPS exposed to severe thermal and aerodynamic environments, the mechanical stability of the HCS plates under fluid-structure-thermal coupling is crucial for preliminary design of the TPS. In this paper, an innovative layerwise finite element model of the HCS plates is presented, and coupled fluid-structure-thermal analysis is performed with a parameter study. The proposed method is validated to be accurate and efficient against commercial software simulation. Results have shown that the mechanical instability of the HCS plates can be induced by fluid-structure coupling and further accelerated by thermal effect. The influences of geometric parameters on thermal buckling and dynamic stability present opposite tendencies, indicating a tradeoff is required for the TPS design. The present analytical model and numerical results provide design guidance in the practical application of the novel TPS.


2002 ◽  
Vol 23 ◽  
pp. S77
Author(s):  
O. E. Suman ◽  
R. P. Mlcak ◽  
S. J. Thomas ◽  
D. N. Herndon

Author(s):  
George P Kozynets ◽  
Volodymyr P Tsyhankov ◽  
Daria S Korolova ◽  
Olga V Gornytska ◽  
Olexiy M Savchuk ◽  
...  

Abstract This work is dedicated to the detection of imbalance between the pro- and anti-coagulant branches of hemostasis at severe burn injuries by evaluating the content or activity of individual clotting factors. To select the targets for accurate diagnostics we measured the concentrations of soluble fibrin monomeric complexes and fibrinogen, levels of total prothrombin, factor X, protein C and antithrombin III, and recorded the time of clotting in activated partial thromboplastin time and prothrombin time tests. Factor X level was increased in 26 % of patients on the first day after the burn and it rose further in 62 % patients on the 14 th day of recovery. Increasing factor X level is assumed to be a risk factor of thrombotic complications. We propose to use it as a marker of predisposition to thrombosis at severe burn injury.


2012 ◽  
Vol 25 (01) ◽  
pp. 42-48 ◽  
Author(s):  
S. C. Ralphs ◽  
G Coronado ◽  
D. C. Sweet ◽  
J. Ward ◽  
C. P. Bloch ◽  
...  

SummaryObjective: To compare the hydro-surgical technique to traditional techniques for removal of subcutaneous tissue in the preparation of full-thickness skin grafts.Study design: Ex vivo experimental study and a single clinical case report.Sample population: Four canine cadavers and a single clinical case.Methods: Four sections of skin were harvested from the lateral flank of recently euthanatized dogs. Traditional preparation methods used included both a blade or scissors technique, each of which were compared to the hydro-surgical technique individually. Preparation methods were compared based on length of time for removal of the subcutaneous tissue from the graft, histologic grading, and measurable thickness as compared to an untreated sample.Results: The hydro-surgical technique had the shortest skin graft preparation time as compared to traditional techniques (p = 0.002). There was no significant difference in the histological grading or measurable subcutaneous thickness between skin specimens.Clinical significance: The hydro-surgical technique provides a rapid, effective debridement of subcutaneous tissue in the preparation of full-thickness skin grafts. There were not any significant changes in histological grade and subcutaneous tissue remaining among all treatment types. Additionally the hydro-surgical technique was successfully used to prepare a full-thickness meshed free skin graft in the reconstruction of a traumatic medial tarsal wound in a dog.Presented at the ACVS symposium during the resident seminar, Seattle, Washington,USA on October 22, 2010.


Inflammation ◽  
1996 ◽  
Vol 20 (3) ◽  
pp. 229-241 ◽  
Author(s):  
O. Ljunghusen ◽  
J. Lundahl ◽  
H. Nettelblad ◽  
B. Nilsson ◽  
F. Sj�gren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document