scholarly journals Multiscale Understanding of High-Energy Cathodes in Solid-State Batteries: from Atomic Scale to Macroscopic Scale

2021 ◽  
Author(s):  
Shuo Sun ◽  
Chen-Zi Zhao ◽  
Hong Yuan ◽  
Yang Lu ◽  
Jiang-Kui Hu ◽  
...  

Abstract In the crucial area of sustainable energy storage, solid-state batteries (SSBs) with nonflammable solid electrolytes stand out due to their potential benefits of enhanced safety, energy density, and cycle life. However, the complexity within the composite cathode determines that fabricating an ideal electrode needs to link chemistry (atomic scale), materials (microscopic/mesoscopic scale), and electrode system (macroscopic scale). Therefore, understiang solid-state composite cathodes covering multiple scales is of vital importance for the development of practical SSBs. In this review, the challenges and basic knowledge of composite cathodes from the atomic scale to the macroscopic scale in SSBs are outlined with a special focus on the interfacial structure, charge transport, and mechanical degradation. Based on these dilemmas, emerging strategies to design a high-performance composite cathode and advanced characterization techniques are summarized. Moreover, future perspectives toward composite cathodes are discussed, aiming to facilitate the develop energy-dense solid-state batteries.

Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 408
Author(s):  
Katja Waetzig ◽  
Christian Heubner ◽  
Mihails Kusnezoff

All-solid-state batteries (ASSB) are considered promising candidates for future energy storage and advanced electric mobility. When compared to conventional Li-ion batteries, the substitution of Li-ion conductive, flammable liquids by a solid electrolyte and the application of Li-metal anodes substantially increase safety and energy density. The solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) provides high Li-ion conductivity of about 10−3 S/cm and is considered a highly promising candidate for both the solid electrolyte-separator and the ionically conductive part of the all-solid state composite cathode, consisting of the cathode material, the solid electrolyte, and an electron conductor. Co-sintering of the composite cathode is a sophisticated challenge, because temperatures above 1000 °C are typically required to achieve the maximum ionic conductivity of LATP but provoke reactions with the cathode material, inhibiting proper electrochemical functioning in the ASSB. In the present study, the application of sintering aids with different melting points and their impact on the sinterability and the conductivity of LATP were investigated by means of optical dilatometry and impedance spectroscopy. The microstructure of the samples was analyzed by SEM. The results indicate that the sintering temperature can be reduced below 800 °C while maintaining high ionic conductivity of up to 3.6 × 10−4 S/cm. These insights can be considered a crucial step forward towards enable LATP-based composite cathodes for future ASSB.


2021 ◽  
Author(s):  
Christopher Doerrer ◽  
Isaac Capone ◽  
Sudarshan Narayanan ◽  
Junliang Liu ◽  
Christopher Grovenor ◽  
...  

<div><div><div><p>To match the high capacity of metallic anodes, all-solid-state batteries (ASSBs) re- quire high energy density, long-lasting composite cathodes such as Ni-Mn-Co (NMC)- based lithium oxides mixed with a solid-state electrolyte (SSE). However in practice, cathode capacity typically fades due to NMC cracking and increasing NMC/SSE in- terface debonding because of NMC pulverization, which is only partially mitigated by the application of a high cell pressure during cycling. Using smart processing proto- cols we report a single crystal particulate LiNi0.83Mn0.06Co0.11O2 and Li6PS5Cl SSE composite cathode with outstanding discharge capacity of 210 mAh g−1 at 30 °C. A first cycle coulombic efficiency of >85%, and >99% thereafter, was achieved despite a 5.5% volume change during cycling. A near-practical discharge capacity at a high areal capacity of 8.7 mAh cm−2 was obtained using a novel asymmetric anode/cathode cycling pressure of only 2.5 MPa/0.2 MPa.</p></div></div></div>


2021 ◽  
Author(s):  
Christopher Doerrer ◽  
Isaac Capone ◽  
Sudarshan Narayanan ◽  
Junliang Liu ◽  
Christopher Grovenor ◽  
...  

<div><div><div><p>To match the high capacity of metallic anodes, all-solid-state batteries (ASSBs) re- quire high energy density, long-lasting composite cathodes such as Ni-Mn-Co (NMC)- based lithium oxides mixed with a solid-state electrolyte (SSE). However in practice, cathode capacity typically fades due to NMC cracking and increasing NMC/SSE in- terface debonding because of NMC pulverization, which is only partially mitigated by the application of a high cell pressure during cycling. Using smart processing proto- cols we report a single crystal particulate LiNi0.83Mn0.06Co0.11O2 and Li6PS5Cl SSE composite cathode with outstanding discharge capacity of 210 mAh g−1 at 30 °C. A first cycle coulombic efficiency of >85%, and >99% thereafter, was achieved despite a 5.5% volume change during cycling. A near-practical discharge capacity at a high areal capacity of 8.7 mAh cm−2 was obtained using a novel asymmetric anode/cathode cycling pressure of only 2.5 MPa/0.2 MPa.</p></div></div></div>


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Georg Dewald ◽  
Saneyuki Ohno ◽  
Marvin Kraft ◽  
Raimund Koerver ◽  
Paul Till ◽  
...  

<p>All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, are still critical issues that prevent long-term stable high-energy cells. In this study, we use <i>stepwise</i><i>cyclic voltammetry </i>to obtain information on the practical oxidative stability limit of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>, a Li<sub>2</sub>S‑P<sub>2</sub>S<sub>5</sub>glass, as well as the argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrode, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential at 25 °C of oxidative decomposition at the electrode-electrolyte interface is identified. X‑ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that after the formation of these decomposition products, significant redox behavior is observed. This explains previously reported redox activity of thiophosphate solid electrolytes, which contributes to the overall cell performance in solid-state batteries. The <i>stepwise cyclic voltammetry</i>approach presented here shows that the practical oxidative stability at 25 °C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes. </p>


2019 ◽  
Author(s):  
Georg Dewald ◽  
Saneyuki Ohno ◽  
Marvin Kraft ◽  
Raimund Koerver ◽  
Paul Till ◽  
...  

<p>All-solid-state batteries are often expected to replace conventional lithium-ion batteries in the future. However, the practical electrochemical and cycling stability of the best-conducting solid electrolytes, i.e. lithium thiophosphates, are still critical issues that prevent long-term stable high-energy cells. In this study, we use <i>stepwise</i><i>cyclic voltammetry </i>to obtain information on the practical oxidative stability limit of Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>, a Li<sub>2</sub>S‑P<sub>2</sub>S<sub>5</sub>glass, as well as the argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolytes. We employ indium metal and carbon black as the counter and working electrode, respectively, the latter to increase the interfacial contact area to the electrolyte as compared to the commonly used planar steel electrodes. Using a stepwise increase in the reversal potentials, the onset potential at 25 °C of oxidative decomposition at the electrode-electrolyte interface is identified. X‑ray photoelectron spectroscopy is used to investigate the oxidation of sulfur(-II) in the thiophosphate polyanions to sulfur(0) as the dominant redox process in all electrolytes tested. Our results suggest that after the formation of these decomposition products, significant redox behavior is observed. This explains previously reported redox activity of thiophosphate solid electrolytes, which contributes to the overall cell performance in solid-state batteries. The <i>stepwise cyclic voltammetry</i>approach presented here shows that the practical oxidative stability at 25 °C of thiophosphate solid electrolytes against carbon is kinetically higher than predicted by thermodynamic calculations. The method serves as an efficient guideline for the determination of practical, kinetic stability limits of solid electrolytes. </p>


2021 ◽  
pp. 1831-1838
Author(s):  
Xing Xing ◽  
Yejing Li ◽  
Shen Wang ◽  
Haodong Liu ◽  
Zhaohui Wu ◽  
...  

2021 ◽  
pp. 2240-2247
Author(s):  
Ritu Sahore ◽  
Zhijia Du ◽  
Xi Chelsea Chen ◽  
W. Blake Hawley ◽  
Andrew S. Westover ◽  
...  

Author(s):  
Maoyi Yi ◽  
Li Jie ◽  
Xin-ming Fan ◽  
Maohui Bai ◽  
Zhi Zhang ◽  
...  

PEO-based composite electrolytes are one of the most practical electrolytes in all-solid batteries (ASSBs). To achieve the perspective of ASSBs with high energy density, PEO based composite electrolytes should match...


Sign in / Sign up

Export Citation Format

Share Document