Effect of Serum Components on Syncytium Formation and Virus Production by Cells Infected with Human Immunodeficiency Virus In Vitro

1992 ◽  
Vol 8 (4) ◽  
pp. 513-520 ◽  
Author(s):  
HIROSHI USHIJIMA ◽  
SENWA UNTEN ◽  
HITOSHI HONMA ◽  
HIDEAKI TSUCHIE ◽  
TAKASHI KITAMURA ◽  
...  
2009 ◽  
Vol 83 (15) ◽  
pp. 7467-7474 ◽  
Author(s):  
Jia Weng ◽  
Dimitry N. Krementsov ◽  
Sandhya Khurana ◽  
Nathan H. Roy ◽  
Markus Thali

ABSTRACT In vitro propagation studies have established that human immunodeficiency virus type 1 (HIV-1) is most efficiently transmitted at the virological synapse that forms between producer and target cells. Despite the presence of the viral envelope glycoprotein (Env) and CD4 and chemokine receptors at the respective surfaces, producer and target cells usually do not fuse with each other but disengage after the viral particles have been delivered, consistent with the idea that syncytia, at least in vitro, are not required for HIV-1 spread. Here, we tested whether tetraspanins, which are well known regulators of cellular membrane fusion processes that are enriched at HIV-1 exit sites, regulate syncytium formation. We found that overexpression of tetraspanins in producer cells leads to reduced syncytium formation, while downregulation has the opposite effect. Further, we document that repression of Env-induced cell-cell fusion by tetraspanins depends on the presence of viral Gag, and we demonstrate that fusion repression requires the recruitment of Env by Gag to tetraspanin-enriched microdomains (TEMs). However, sensitivity to fusion repression by tetraspanins varied for different viral strains, despite comparable recruitment of their Envs to TEMs. Overall, these data establish tetraspanins as negative regulators of HIV-1-induced cell-cell fusion, and they start delineating the requirements for this regulation.


Intervirology ◽  
1991 ◽  
Vol 32 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Dimitri Viza ◽  
Armando Aranda-Anzaldo ◽  
Claudia Zompetti ◽  
Josep M. Vich

2002 ◽  
Vol 76 (5) ◽  
pp. 2274-2278 ◽  
Author(s):  
Giampiero Piccinini ◽  
Andrea Foli ◽  
Giuditta Comolli ◽  
Julianna Lisziewicz ◽  
Franco Lori

ABSTRACT Dendritic cells are susceptible to human immunodeficiency virus (HIV) infection and may transmit the virus to T cells in vivo. Scarce information is available about drug efficacy in dendritic cells because preclinical testing of antiretroviral drugs has been limited predominantly to T cells and macrophages. We compared the antiviral activities of hydroxyurea and two protease inhibitors (indinavir and ritonavir) in monocyte-derived dendritic cells and in lymphocytes. At therapeutic concentrations (50 to 100 μM), hydroxyurea inhibited supernatant virus production from monocyte-derived dendritic cells in vitro but the drug was ineffective in activated lymphocytes. Concentrations of hydroxyurea insufficient to be effective in activated lymphocytes cultured alone strongly inhibited supernatant virus production from cocultures of uninfected, activated lymphocytes with previously infected monocyte-derived dendritic cells in vitro. In contrast, protease inhibitors were up to 30-fold less efficient in dendritic cells than in activated lymphocytes. Our data support the rationale for testing of the combination of hydroxyurea and protease inhibitors, since these drugs may have complementary antiviral efficacies in different cell compartments. A new criterion for combining drugs for the treatment of HIV infection could be to include at least one drug that selectively targets HIV in viral reservoirs.


Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3866-3875 ◽  
Author(s):  
Bruno Canque ◽  
Youssef Bakri ◽  
Sandrine Camus ◽  
Micael Yagello ◽  
Abdelaziz Benjouad ◽  
...  

Dendritic cells (DC) were sorted on day 8 from cultures of CD34+ cells with stem cell factor/Flt-3 ligand/ granulocyte-macrophage colony-stimulating factor (GM-CSF)/tumor necrosis factor- (TNF-)/interleukin-4 (IL-4). Exposing immature CCR5+CXCR4lo/− DC to CCR5-dependent human immunodeficiency virus (HIV)-1Ba-L led to productive and cytopathic infection, whereas only low virus production occurred in CXCR4-dependent HIV-1LAI–exposed DC. PCR analysis of the DC 48 hours postinfection showed efficient entry of HIV-1Ba-L but not of HIV-1LAI. CD40 ligand- or monocyte-conditioned medium-induced maturation of HIV-1Ba-L–infected DC reduced virus production by about 1 Log, while cells became CCR5−. However, HIV-1Ba-L–exposed mature DC harbored 15-fold more viral DNA than their immature counterparts, ruling out inhibition of virus entry. Simultaneously, CXCR4 upregulation by mature DC coincided with highly efficient entry of HIV-1LAI which, nonetheless, replicated at the same low level in mature as in immature DC. In line with these findings, coculture of HIV-1Ba-L–infected immature DC with CD3 monoclonal antibody–activated autologous CD4+ T lymphocytes in the presence of AZT decreased virus production by the DC. Finally, whether they originated from CD1a+CD14− or CD1a−CD14+ precursors, DC did not differ as regards permissivity to HIV, although CD1a+CD14− precursor-derived immature DC could produce higher HIV-1Ba-L amounts than their CD1a−CD14+ counterparts. Thus, both DC permissivity to, and capacity to support replication of, HIV is primarily determined by their maturation stage.


Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3866-3875 ◽  
Author(s):  
Bruno Canque ◽  
Youssef Bakri ◽  
Sandrine Camus ◽  
Micael Yagello ◽  
Abdelaziz Benjouad ◽  
...  

Abstract Dendritic cells (DC) were sorted on day 8 from cultures of CD34+ cells with stem cell factor/Flt-3 ligand/ granulocyte-macrophage colony-stimulating factor (GM-CSF)/tumor necrosis factor- (TNF-)/interleukin-4 (IL-4). Exposing immature CCR5+CXCR4lo/− DC to CCR5-dependent human immunodeficiency virus (HIV)-1Ba-L led to productive and cytopathic infection, whereas only low virus production occurred in CXCR4-dependent HIV-1LAI–exposed DC. PCR analysis of the DC 48 hours postinfection showed efficient entry of HIV-1Ba-L but not of HIV-1LAI. CD40 ligand- or monocyte-conditioned medium-induced maturation of HIV-1Ba-L–infected DC reduced virus production by about 1 Log, while cells became CCR5−. However, HIV-1Ba-L–exposed mature DC harbored 15-fold more viral DNA than their immature counterparts, ruling out inhibition of virus entry. Simultaneously, CXCR4 upregulation by mature DC coincided with highly efficient entry of HIV-1LAI which, nonetheless, replicated at the same low level in mature as in immature DC. In line with these findings, coculture of HIV-1Ba-L–infected immature DC with CD3 monoclonal antibody–activated autologous CD4+ T lymphocytes in the presence of AZT decreased virus production by the DC. Finally, whether they originated from CD1a+CD14− or CD1a−CD14+ precursors, DC did not differ as regards permissivity to HIV, although CD1a+CD14− precursor-derived immature DC could produce higher HIV-1Ba-L amounts than their CD1a−CD14+ counterparts. Thus, both DC permissivity to, and capacity to support replication of, HIV is primarily determined by their maturation stage.


Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4215-4228 ◽  
Author(s):  
B Canque ◽  
M Rosenzwajg ◽  
S Camus ◽  
M Yagello ◽  
ML Bonnet ◽  
...  

Abstract CD1a+ dendritic cells (DC) differentiate from a major population of nonadherent CD13(hi)lin-cells that appear when human cord blood CD34+ hematopoietic progenitor cells are cultured with stem-cell factor, granulocyte/macrophage (MA) colony-stimulating factor, and tumor necrosis factor-alpha (TNF-alpha) for 5 days. CD13hilin- cells, which also comprise MA and granulocyte precursors, are CD4+ and can thus be targets of human immunodeficiency virus (HIV). Low replication was noted when these day 5 cells were infected with lymphotropic HIV-1LA1 (p24: < or = 4 ng/mL on day 8 postinfection [PI]), while high virus production occurred with MA-tropic HIV-1Ba-L, HIV-1Ada, or HIV-1-m-n. (p24: 50 to > or = 1,000 ng/mL). Strong cytopathicity (CPE) was then observed in nonadherent cells as in adherent MA. However, FACS analysis on day 7 PI showed that HIV did not affect differentiation of DC that survived CPE: apart from CD4 downmodulation related to HIV production, overall expression of CD40, CD80, and CD86 costimulatory molecules, and of HLA-DR, was unchanged relative to controls. At that time, the capacity of DC from HIV-infected cultures to stimulate the mixed leukocyte reaction was only altered less than 10-fold. Immunocytochemistry on day 7 PI showed that most HIV-infected cells were included in syncytia that were stained by anti-CD1a, anti-S100, and anti-CD14 antibodies, indicating that syncytia consisted of DC and cells of the MA lineage. Polymerase chain reaction analysis of FACS- sorted CD1a+ cells confirmed that they harbored then HIV DNA. Viral DNA was also detected in CD1a+ DC from noninfected cultures that had been exposed to HIV only after sorting. Therefore, we examined whether in infected cultures DC precursors were infected at the onset or if virus spread later from other infected cells to differentiated DC. This was answered by showing that, 24 hours postexposure to HIV, viral DNA was preferentially detected in day 5 sorted CD13hilin-versus CD13hilin- cells, and that it was found in the CD1a+ progeny of CD13(hi)lin-cells 48 hours later. In addition, HIV replication did not affect myeloid clonogenic progenitors in day 0 to day 7 PI cultures, although viral DNA was detected in colony-forming unit-granulocyte/macrophage (CFU-GM)/CFU-M colonies derived from day 3 and 7 PI cultures. Thus, precursors of DC and their progeny are susceptible to HIV in vitro, but, apart from CPE, the effect of virus production on DC differentiation or function is limited.


2008 ◽  
Vol 89 (9) ◽  
pp. 2252-2261 ◽  
Author(s):  
Reza Nazari ◽  
Xue Zhong Ma ◽  
Sadhna Joshi

Rz1–7 is a multimeric hammerhead ribozyme targeting seven unique sites within the human CCR5 mRNA that is active in vitro. Mouse stem cell virus-based MGIN and human immunodeficiency virus (HIV)-1-based HEG1 vectors were used to express Rz1–7 in a human CD4+ T lymphoid cell line. Stable transductants expressed Rz1–7, which was further shown to be active, since CCR5 mRNA and surface CCR5 protein expression levels decreased. High levels of progeny virus were produced when the transduced cells were challenged with an X4-tropic HIV-1 (NL4-3) strain, suggesting that Rz1–7 expression does not affect X4-tropic virus replication. When the transduced cells expressing Rz1–7 were challenged with the R5-tropic HIV-1 (BaL) strain, 99–100 % inhibition of progeny virus production was observed for the duration of the experiment (∼2 months). When the cells were precultured for 2–3 months prior to HIV-1 infection, inhibition was more prominent in cells transduced with MGIN-Rz1–7 than with HEG1-Rz1–7. Inhibition occurred at the level of viral entry, as no HIV-1 DNA could be detected. These results demonstrate that Rz1–7 confers excellent inhibition of R5-tropic HIV-1 replication at the level of entry. Therefore, we anticipate that this multimeric ribozyme will be beneficial for HIV-1 gene therapy.


1996 ◽  
Vol 40 (3) ◽  
pp. 750-754 ◽  
Author(s):  
R Datema ◽  
L Rabin ◽  
M Hincenbergs ◽  
M B Moreno ◽  
S Warren ◽  
...  

SID 791, a bicyclam inhibiting human immunodeficiency virus (HIV) replication in vitro by blocking virus entry into cells, is an effective inhibitor of virus production and of depletion of human CD4+ T cells in HIV type 1-infected SCID-hu Thy/Liv mice. Steady levels of 100 ng of SID 791 or higher per ml in plasma resulted in statistically significant inhibition of p24 antigen formation. Daily injections of SID 791 caused a dose-dependent decrease in viremia, and this inhibition could be potentiated by coadministration of zidovudine or didanose. The present study suggests that SID 791 alone or in combination with licensed antiviral agents may decrease the virus load in HIV-infected patients and, by extension, that the infectious cell entry step is a valid target for antiviral chemotherapy of HIV disease. The SCID-hu Thy/Liv model in effect provides a rapid means of assessing the potential of compounds with novel modes of antiviral action, as well as the potential of antiviral drug combinations.


Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4215-4228 ◽  
Author(s):  
B Canque ◽  
M Rosenzwajg ◽  
S Camus ◽  
M Yagello ◽  
ML Bonnet ◽  
...  

CD1a+ dendritic cells (DC) differentiate from a major population of nonadherent CD13(hi)lin-cells that appear when human cord blood CD34+ hematopoietic progenitor cells are cultured with stem-cell factor, granulocyte/macrophage (MA) colony-stimulating factor, and tumor necrosis factor-alpha (TNF-alpha) for 5 days. CD13hilin- cells, which also comprise MA and granulocyte precursors, are CD4+ and can thus be targets of human immunodeficiency virus (HIV). Low replication was noted when these day 5 cells were infected with lymphotropic HIV-1LA1 (p24: < or = 4 ng/mL on day 8 postinfection [PI]), while high virus production occurred with MA-tropic HIV-1Ba-L, HIV-1Ada, or HIV-1-m-n. (p24: 50 to > or = 1,000 ng/mL). Strong cytopathicity (CPE) was then observed in nonadherent cells as in adherent MA. However, FACS analysis on day 7 PI showed that HIV did not affect differentiation of DC that survived CPE: apart from CD4 downmodulation related to HIV production, overall expression of CD40, CD80, and CD86 costimulatory molecules, and of HLA-DR, was unchanged relative to controls. At that time, the capacity of DC from HIV-infected cultures to stimulate the mixed leukocyte reaction was only altered less than 10-fold. Immunocytochemistry on day 7 PI showed that most HIV-infected cells were included in syncytia that were stained by anti-CD1a, anti-S100, and anti-CD14 antibodies, indicating that syncytia consisted of DC and cells of the MA lineage. Polymerase chain reaction analysis of FACS- sorted CD1a+ cells confirmed that they harbored then HIV DNA. Viral DNA was also detected in CD1a+ DC from noninfected cultures that had been exposed to HIV only after sorting. Therefore, we examined whether in infected cultures DC precursors were infected at the onset or if virus spread later from other infected cells to differentiated DC. This was answered by showing that, 24 hours postexposure to HIV, viral DNA was preferentially detected in day 5 sorted CD13hilin-versus CD13hilin- cells, and that it was found in the CD1a+ progeny of CD13(hi)lin-cells 48 hours later. In addition, HIV replication did not affect myeloid clonogenic progenitors in day 0 to day 7 PI cultures, although viral DNA was detected in colony-forming unit-granulocyte/macrophage (CFU-GM)/CFU-M colonies derived from day 3 and 7 PI cultures. Thus, precursors of DC and their progeny are susceptible to HIV in vitro, but, apart from CPE, the effect of virus production on DC differentiation or function is limited.


Sign in / Sign up

Export Citation Format

Share Document