The Susceptibility to X4 and R5 Human Immunodeficiency Virus-1 Strains of Dendritic Cells Derived In Vitro From CD34+ Hematopoietic Progenitor Cells Is Primarily Determined by Their Maturation Stage

Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3866-3875 ◽  
Author(s):  
Bruno Canque ◽  
Youssef Bakri ◽  
Sandrine Camus ◽  
Micael Yagello ◽  
Abdelaziz Benjouad ◽  
...  

Dendritic cells (DC) were sorted on day 8 from cultures of CD34+ cells with stem cell factor/Flt-3 ligand/ granulocyte-macrophage colony-stimulating factor (GM-CSF)/tumor necrosis factor- (TNF-)/interleukin-4 (IL-4). Exposing immature CCR5+CXCR4lo/− DC to CCR5-dependent human immunodeficiency virus (HIV)-1Ba-L led to productive and cytopathic infection, whereas only low virus production occurred in CXCR4-dependent HIV-1LAI–exposed DC. PCR analysis of the DC 48 hours postinfection showed efficient entry of HIV-1Ba-L but not of HIV-1LAI. CD40 ligand- or monocyte-conditioned medium-induced maturation of HIV-1Ba-L–infected DC reduced virus production by about 1 Log, while cells became CCR5−. However, HIV-1Ba-L–exposed mature DC harbored 15-fold more viral DNA than their immature counterparts, ruling out inhibition of virus entry. Simultaneously, CXCR4 upregulation by mature DC coincided with highly efficient entry of HIV-1LAI which, nonetheless, replicated at the same low level in mature as in immature DC. In line with these findings, coculture of HIV-1Ba-L–infected immature DC with CD3 monoclonal antibody–activated autologous CD4+ T lymphocytes in the presence of AZT decreased virus production by the DC. Finally, whether they originated from CD1a+CD14− or CD1a−CD14+ precursors, DC did not differ as regards permissivity to HIV, although CD1a+CD14− precursor-derived immature DC could produce higher HIV-1Ba-L amounts than their CD1a−CD14+ counterparts. Thus, both DC permissivity to, and capacity to support replication of, HIV is primarily determined by their maturation stage.

Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3866-3875 ◽  
Author(s):  
Bruno Canque ◽  
Youssef Bakri ◽  
Sandrine Camus ◽  
Micael Yagello ◽  
Abdelaziz Benjouad ◽  
...  

Abstract Dendritic cells (DC) were sorted on day 8 from cultures of CD34+ cells with stem cell factor/Flt-3 ligand/ granulocyte-macrophage colony-stimulating factor (GM-CSF)/tumor necrosis factor- (TNF-)/interleukin-4 (IL-4). Exposing immature CCR5+CXCR4lo/− DC to CCR5-dependent human immunodeficiency virus (HIV)-1Ba-L led to productive and cytopathic infection, whereas only low virus production occurred in CXCR4-dependent HIV-1LAI–exposed DC. PCR analysis of the DC 48 hours postinfection showed efficient entry of HIV-1Ba-L but not of HIV-1LAI. CD40 ligand- or monocyte-conditioned medium-induced maturation of HIV-1Ba-L–infected DC reduced virus production by about 1 Log, while cells became CCR5−. However, HIV-1Ba-L–exposed mature DC harbored 15-fold more viral DNA than their immature counterparts, ruling out inhibition of virus entry. Simultaneously, CXCR4 upregulation by mature DC coincided with highly efficient entry of HIV-1LAI which, nonetheless, replicated at the same low level in mature as in immature DC. In line with these findings, coculture of HIV-1Ba-L–infected immature DC with CD3 monoclonal antibody–activated autologous CD4+ T lymphocytes in the presence of AZT decreased virus production by the DC. Finally, whether they originated from CD1a+CD14− or CD1a−CD14+ precursors, DC did not differ as regards permissivity to HIV, although CD1a+CD14− precursor-derived immature DC could produce higher HIV-1Ba-L amounts than their CD1a−CD14+ counterparts. Thus, both DC permissivity to, and capacity to support replication of, HIV is primarily determined by their maturation stage.


2002 ◽  
Vol 76 (21) ◽  
pp. 11033-11041 ◽  
Author(s):  
Lawrence Fong ◽  
Manuela Mengozzi ◽  
Nancy W. Abbey ◽  
Brian G. Herndier ◽  
Edgar G. Engleman

ABSTRACT Immature plasmacytoid dendritic cells are the principal alpha interferon-producing cells (IPC), responsible for primary antiviral immunity. IPC express surface molecules CD4, CCR5, and CXCR4, which are known coreceptors required for human immunodeficiency virus (HIV) infection. Here we show that IPC are susceptible to and replicate HIV type 1 (HIV-1). Importantly, viral replication is triggered upon activation of IPC with CD40 ligand, a signal physiologically delivered by CD4 T cells. Immunohistochemical staining of tonsil from HIV-infected individuals reveals HIV p24+ IPC, consistent with in vivo infection of these cells. IPC exposed in vitro to HIV produce alpha interferon, which partially inhibits viral replication. Nevertheless, IPC efficiently transmit HIV-1 to CD4 T-cells, and such transmission is also augmented by CD40 ligand activation. IPC produce RANTES/CCL5 and MIP-1α/CCL3 when exposed to HIV in vitro. IPC also induce naïve CD4 T cells to proliferate and would therefore preferentially infect these cells. These results indicate that IPC may play an important role in the dissemination of HIV.


2002 ◽  
Vol 76 (5) ◽  
pp. 2274-2278 ◽  
Author(s):  
Giampiero Piccinini ◽  
Andrea Foli ◽  
Giuditta Comolli ◽  
Julianna Lisziewicz ◽  
Franco Lori

ABSTRACT Dendritic cells are susceptible to human immunodeficiency virus (HIV) infection and may transmit the virus to T cells in vivo. Scarce information is available about drug efficacy in dendritic cells because preclinical testing of antiretroviral drugs has been limited predominantly to T cells and macrophages. We compared the antiviral activities of hydroxyurea and two protease inhibitors (indinavir and ritonavir) in monocyte-derived dendritic cells and in lymphocytes. At therapeutic concentrations (50 to 100 μM), hydroxyurea inhibited supernatant virus production from monocyte-derived dendritic cells in vitro but the drug was ineffective in activated lymphocytes. Concentrations of hydroxyurea insufficient to be effective in activated lymphocytes cultured alone strongly inhibited supernatant virus production from cocultures of uninfected, activated lymphocytes with previously infected monocyte-derived dendritic cells in vitro. In contrast, protease inhibitors were up to 30-fold less efficient in dendritic cells than in activated lymphocytes. Our data support the rationale for testing of the combination of hydroxyurea and protease inhibitors, since these drugs may have complementary antiviral efficacies in different cell compartments. A new criterion for combining drugs for the treatment of HIV infection could be to include at least one drug that selectively targets HIV in viral reservoirs.


Blood ◽  
1999 ◽  
Vol 94 (3) ◽  
pp. 845-852 ◽  
Author(s):  
Shin-ichi Hashimoto ◽  
Takuji Suzuki ◽  
Hong-Yan Dong ◽  
Shigenori Nagai ◽  
Nobuyuki Yamazaki ◽  
...  

Dendritic cells (DCs) are professional antigen-presenting cells in the immune system and can be generated in vitro from hematopoietic progenitor cells in the bone marrow, CD34+ cord blood cells, precursor cells in the peripheral blood, and blood monocytes by culturing with granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-4, and tumor necrosis factor-. We have performed serial analysis of gene expression (SAGE) in DCs derived from human blood monocytes. A total of 58,540 tag sequences from a DC complementary DNA (cDNA) library represented more than 17,000 different genes, and these data were compared with SAGE analysis of tags from monocytes (Mo) and GM-CSF–induced macrophages (M◊). Many of the genes that were differentially expressed in DCs were identified as genes encoding proteins related to cell structure and cell motility. Interestingly, the highly expressed genes in DCs encode chemokines such as TARC, MDC, and MCP-4, which preferentially chemoattract Th2-type lymphocytes. Although DCs have been considered to be very heterogeneous, the identification of specific genes expressed in human Mo-derived DCs should provide candidate genes to define subsets of, the function of, and the maturation stage of DCs and possibly also to diagnose diseases in which DCs play a significant role, such as autoimmune diseases and neoplasms. This study represents the first extensive gene expression analysis in any type of DCs.


1992 ◽  
Vol 8 (4) ◽  
pp. 513-520 ◽  
Author(s):  
HIROSHI USHIJIMA ◽  
SENWA UNTEN ◽  
HITOSHI HONMA ◽  
HIDEAKI TSUCHIE ◽  
TAKASHI KITAMURA ◽  
...  

Blood ◽  
2005 ◽  
Vol 105 (10) ◽  
pp. 4120-4126 ◽  
Author(s):  
Xiao-Xia Jiang ◽  
Yi Zhang ◽  
Bing Liu ◽  
Shuang-Xi Zhang ◽  
Ying Wu ◽  
...  

AbstractMesenchymal stem cells (MSCs), in addition to their multilineage differentiation, have a direct immunosuppressive effect on T-cell proliferation in vitro. However, it is unclear whether they also modulate the immune system by acting on the very first step. In this investigation, we addressed the effects of human MSCs on the differentiation, maturation, and function of dendritic cells (DCs) derived from CD14+ monocytes in vitro. Upon induction with granulocyte-macrophage colony-stimulating factor (GM-CSF) plus interleukin-4 (IL-4), MSC coculture could strongly inhibit the initial differentiation of monocytes to DCs, but this effect is reversible. In particular, such suppression could be recapitulated with no intercellular contact at a higher MSC/monocyte ratio (1:10). Furthermore, mature DCs treated with MSCs were significantly reduced in the expression of CD83, suggesting their skew to immature status. Meanwhile, decreased expression of presentation molecules (HLA-DR and CD1a) and costimulatory molecules (CD80 and CD86) and down-regulated IL-12 secretion were also observed. In consistence, the allostimulatory ability of MSC-treated mature DCs on allogeneic T cells was impaired. In conclusion, our data suggested for the first time that human MSCs could suppress monocyte differentiation into DCs, the most potent antigen-presenting cells (APCs), thus indicating the versatile regulation of MSCs on the ultimate specific immune response.


2001 ◽  
Vol 75 (9) ◽  
pp. 4413-4419 ◽  
Author(s):  
Zheng Fan ◽  
Xiao-Li Huang ◽  
Luann Borowski ◽  
John W. Mellors ◽  
Charles R. Rinaldo

ABSTRACT We demonstrate that dendritic cells loaded in vitro with human immunodeficiency virus type 1 (HIV-1) protein-liposome complexes activate HLA class I-restricted anti-HIV-1 cytotoxic T-lymphocyte and gamma interferon (IFN-γ) responses in autologous CD8+ T cells from late-stage HIV-1-infected patients on prolonged combination drug therapy. Interleukin-12 enhanced this effect through an interleukin-2- and IFN-γ-mediated pathway. This suggests that dendritic cells from HIV-1-infected persons can be engineered to evoke stronger anti-HIV-1 CD8+ T-cell reactivity as a strategy to augment antiretroviral therapy.


1998 ◽  
Vol 72 (4) ◽  
pp. 2733-2737 ◽  
Author(s):  
Angela Granelli-Piperno ◽  
Elena Delgado ◽  
Victoria Finkel ◽  
William Paxton ◽  
Ralph M. Steinman

ABSTRACT Dendritic cells (DCs) can develop from CD14+ peripheral blood monocytes cultured in granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL-4). By 6 days in culture, the cells have the characteristics of immature DCs and can be further induced to mature by inflammatory stimuli or by monocyte-conditioned medium. After infection with macrophagetropic (M-tropic) human immunodeficiency virus type 1 (HIV-1), monocytes and mature DCs show a block in reverse transcription and only form early transcripts that can be amplified with primers for the R/U5 region. In contrast, immature DCs cultured for 6 or 11 days in GM-CSF and IL-4 complete reverse transcription and show a strong signal when LTR/gag primers are used. Blood monocytes and mature DCs do not replicate HIV-1, whereas immature DCs can be productively infected, but only with M-tropic HIV-1. The virus produced by immature DCs readily infects activated T cells. Although mature DCs do not produce virus, these cells transmit both M- and T-tropic virus to T cells. In the cocultures, both DCs and T cells must express functional chemokine coreceptors for viral replication to occur. Therefore, the developmental stage of DCs can influence the interaction of these cells with HIV-1 and influence the extent to which M-tropic and T-tropic virus can replicate.


Blood ◽  
1991 ◽  
Vol 77 (8) ◽  
pp. 1699-1705
Author(s):  
K Kitano ◽  
CN Abboud ◽  
DH Ryan ◽  
SG Quan ◽  
GC Baldwin ◽  
...  

To define the relationship between human immunodeficiency virus type 1 (HIV-1) infection in hematopoietic stem cells and virus production by their progeny, we performed kinetic studies infecting bone marrow (BM) stem cells and culturing them in the presence of hematopoietic growth factors. CD34-positive (CD34+), CD4-negative (CD4-) BM cells were isolated and infected in vitro with the monocytotropic HIV-1JR-FL strain or the laboratory-maintained HTLV-IIIB strain at a high multiplicity of infection. The cells were susceptible to productive infection only with HIV-1JR-FL, and virus production as measured by p24 protein release was markedly increased (more than fivefold) in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3). Macrophage CSF (M-CSF) was less stimulatory and granulocyte CSF (G-CSF) had no effect on virus production. Virus production coincided with proliferation of mononuclear phagocytes but was not related to granulocytic proliferation in G-CSF-treated BM cultures. Although peak virus production from GM-CSF-treated macrophages occurred 2 to 3 weeks after infection, peak virus production in infected stem cells was observed 5 to 6 weeks after. Enhancement in virus production had a more rapid onset when CD34+/CD4- cells were cultured in the presence of both GM-CSF and IL-3 for 7 or 14 days. Under these conditions there was a 10-fold enhancement in virus production after 7 days of preincubation and a 50-fold enhancement after 14 days. These data indicate that while the stem cell compartment may be susceptible to infection with a monocytotropic HIV-1 strain, productive and sustained infection is realized only after macrophage differentiation. The lack of effect of G-CSF on virus production is likely because of the limited effect of this hematopoietin on mononuclear phagocyte generation and function.


Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 167-175 ◽  
Author(s):  
G Zauli ◽  
M Vitale ◽  
MC Re ◽  
G Furlini ◽  
L Zamai ◽  
...  

In this study, we evaluated the effect of a short-term exposure (2 hours) to two different lymphocytotropic strains of human immunodeficiency virus type 1 (HIV-1; HIVIIIB and ICR-3) on the survival of a factor-dependent CD34+ hematopoietic progenitor cell line (TF-1). At flow cytometry analysis, a significant (P < .05) increase in the frequency of apoptotic cell death was observed in HIV-1-treated TF- 1 cells, supplemented with low doses of either interleukin-3 (IL-3; 0.02 to 1 ng/mL) or granulocyte-macrophage colony-stimulating factor (GM-CSF; 0.02 to 0.2 ng/mL) with respect to mock-treated cells. On the other hand, higher doses of both cytokines or combinations of suboptimal concentrations of IL-3 plus GM-CSF (eg, 0.2, plus 0.2 ng/mL) completely reversed the HIV-1-induced increase of apoptosis. Remarkably, no signs of productive or latent virus replication were ever observed in HIV-1-treated TF-1 cells up to 16 days of liquid culture. In parallel experiments, the in vitro exposure to HIVIIIB induced a significant and progressive increase of apoptotic death in purified bone marrow CD34+ cells, seeded in liquid cultures in the presence of 1 ng/mL IL-3. The HIV-1-induced apoptosis of TF-1 cells was likely triggered by the simple interaction of HIV-1 envelope glycoprotein gp120 with CD4 receptor, which was expressed at a low level on the surface of TF-1 cells. In fact, treatment of TF-1 cells with recombinant gp120 plus a polyclonal anti-gp120 antibody or with anti-CD4 monoclonal antibody plus rabbit antimouse IgG significantly increased the percentage of apoptotic death. These data suggest that HIV-1, and perhaps also free gp120 in the presence of anti-gp120 antibody; could play a direct role in the pathogenesis of peripheral blood cytopenias in acquired immunodeficiency syndrome patients by inducing apoptotic death of hematopoietic progenitor cells without the need of a direct infection.


Sign in / Sign up

Export Citation Format

Share Document