scholarly journals The Role of Genetic Polymorphisms in Antioxidant Enzymes and Potential Antioxidant Therapies in Neonatal Lung Disease

2014 ◽  
Vol 21 (13) ◽  
pp. 1863-1880 ◽  
Author(s):  
Carlo Dani ◽  
Chiara Poggi
Children ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 213
Author(s):  
Abhrajit Ganguly ◽  
Gaston Ofman ◽  
Peter F Vitiello

Reactive oxygen species (ROS) have been the focus of redox research in the realm of oxidative neonatal respiratory diseases such as bronchopulmonary dysplasia (BPD). Over the years, nitric oxide (NO) and carbon monoxide (CO) have been identified as important gaseous signaling molecules involved in modulating the redox homeostasis in the developing lung. While animal data targeting aspects of these redox pathways have been promising in treating and/or preventing experimental models of neonatal lung disease, none are particularly effective in human neonatal clinical trials. In recent years, hydrogen sulfide (H2S) has emerged as a novel gasotransmitter involved in a magnitude of cellular signaling pathways and functions. The importance of H2S signaling may lie in the fact that early life-forms evolved in a nearly anoxic, sulfur-rich environment and were dependent on H2S for energy. Recent studies have demonstrated an important role of H2S and its synthesizing enzymes in lung development, which normally takes place in a relatively hypoxic intrauterine environment. In this review, we look at clues from evolution and explore the important role that the H2S signaling pathway may play in oxidative neonatal respiratory diseases and discuss future opportunities to explore this phenomenon in the context of neonatal chronic lung disease.


2013 ◽  
Vol 68 (12) ◽  
pp. 83-88 ◽  
Author(s):  
L. I. Kolesnikova ◽  
T. A. Bairova ◽  
O. A. Pervushina

Oxidative stress plays an important role in the pathogenesis the most of diseases. Important components of protecting cells from oxidative stress are antioxidant enzymes. Antioxidant enzymes are characterized by population differences in enzyme activity. The purpose of the study to summarize and discuss information on genetic polymorphisms of antioxidant enzymes in the most pathology. The development plays of the role of oxidative stress. 


Author(s):  
Lyudmila P. Kuzmina ◽  
Anastasiya G. Khotuleva ◽  
Evgeniy V. Kovalevsky ◽  
Nikolay N. Anokhin ◽  
Iraklij M. Tskhomariya

Introduction. Various industries widely use chrysotile asbestos, which determines the relevance of research aimed at the prevention of asbestos-related diseases. It is promising to assess the role of specific genes, which products are potentially involved in the development and regulation of certain links in the pathogenesis of asbestosis, forming a genetic predisposition to the disease. The study aims to analyze the presence of associations of genetic polymorphism of cytokines and antioxidant enzymes with asbestosis development. Materials and methods. Groups were formed for examination among employees of OJSC "Uralasbest" with an established diagnosis of asbestosis and without lung diseases. For each person included in the study, dust exposure doses were calculated considering the percentage of time spent at the workplace during the shift for the entire work time. Genotyping of single nucleotide polymorphisms of cytokines IL1b (rs16944), IL4 (rs2243250), IL6 (rs1800795), TNFα (rs1800629) and antioxidant enzymes SOD2 (rs4880), GSTP1 (rs1610011), CAT (rs1001179) was carried out. Results. The authors revealed the associations of polymorphic variants A511G IL1b gene (OR=2.457, 95% CI=1.232-4.899) and C47T SOD2 gene (OR=1.705, 95% CI=1.055-2.756) with the development of asbestosis. There was an increase in the T allele IL4 gene (C589T) frequency in persons with asbestosis at lower values of dust exposure doses (OR=2.185, 95% CI=1.057-4.514). The study showed the associations of polymorphism C589T IL4 gene and C174G IL6 gene with more severe asbestosis, polymorphism A313G GSTP1 gene with pleural lesions in asbestosis. Conclusion. Polymorphic variants of the genes of cytokines and antioxidant enzymes, the protein products directly involved in the pathogenetic mechanisms of the formation of asbestosis, contribute to forming a genetic predisposition to the development and severe course of asbestosis. Using the identified genetic markers to identify risk groups for the development and intense period of asbestos-related pathology will optimize treatment and preventive measures, considering the organism's characteristics.


2020 ◽  
Vol 16 (1) ◽  
pp. 18-27
Author(s):  
Manzoor M. Khan

Interstitial lung disease, a term for a group of disorders, causes lung fibrosis, is mostly refractory to treatments and has a high death rate. After diagnosis the survival is up to 3 years but in some cases the patients live much longer. It involves a heterogenous group of lung diseases that exhibit progressive and irreversible destruction of the lung due to the formation of scars. This results in lung malfunction, disruption of gas exchange, and eventual death because of respiratory failure. The etiology of lung fibrosis is mostly unknown with a few exceptions. The major characteristics of the disease are comprised of injury of epithelial type II cells, increased apoptosis, chronic inflammation, monocytic and lymphocytic infiltration, accumulation of myofibroblasts, and inability to repair damaged tissue properly. These events result in abnormal collagen deposition and scarring. The inflammation process is mild, and the disease is primarily fibrotic driven. Immunosuppressants do not treat the disease but the evidence is evolving that both innate and acquired immune responses a well as the cytokines contribute to at least early progression of the disease. Furthermore, mediators of inflammation including cytokines are involved throughout the process of lung fibrosis. The diverse clinical outcome of the disease is due to different pattern of inflammatory markers. Nonetheless, the development of novel therapeutic strategies requires better understanding of the role of the immune response. This review highlights the role of the immune response in interstitial lung disease and considers the therapeutic strategies based on these observations. For this review several literature data sources were used to assess the role of the immune response in interstitial lung disease and to evaluate the possible therapeutic strategies for the disease.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.3-1047
Author(s):  
V. Pulito-Cueto ◽  
S. Remuzgo Martinez ◽  
F. Genre ◽  
B. Atienza-Mateo ◽  
V. M. Mora-Cuesta ◽  
...  

Background:Interstitial lung disease (ILD) is one of the most significant complications of connective tissue diseases (CTD), leading to an increase of the morbidity and mortality in patients with CTD [1]. A specific T cell subset termed angiogenic T cells (TAng), that promote endothelial repair and revascularization, have been involved in the pathogenesis of CTD [2-4]. However, to the best of our knowledge, no information regarding the role of TAng in CTD-ILD+ is available.Objectives:To study, for the first time, the potential role of TAng related to vascular damage in CTD-ILD+.Methods:Peripheral venous blood was collected from 40 patients with CTD-ILD+ and three comparative groups: 44 CTD-ILD- patients, 21 idiopathic pulmonary fibrosis (IPF) patients and 20 healthy controls (HC). All subjects were recruited from the Rheumatology and Pneumology departments of Hospital Universitario Marqués de Valdecilla, Santander, Spain. Quantification of TAng was performed by flow cytometry. TAng were considered as triple-positive for CD3, CD31 and CXCR4.Results:Patients with CTD-ILD+ exhibited a significantly lower TAng frequency than CTD-ILD- patients (p<0.001). Similar results were obtained when patients with CTD-ILD+ were compared with HC (p=0.004) although no difference was observed between CTD-ILD+ and IPF. In addition, a significant increase of TAng frequency was shown in patients with CTD-ILD- in relation to IPF patients (p<0.001), while no difference was observed between CTD-ILD- and HC.Conclusion:Our results reveal a decrease of TAng frequency related to vascular damage in CTD-ILD+. Furthermore, we disclose that the presence of ILD is associated with lower TAng frequency.References:[1]Expert Rev Clin Immunol 2018;14(1):69-82.[2]Circulation 2007;116(15):1671-82.[3]Ann Rheum Dis 2015 74(5):921-7.[4]PLoS One 2017;12(8):e0183102.Acknowledgements:Personal funds, VP-C: PREVAL18/01 (IDIVAL); SR-M: RD16/0012/0009 (ISCIII-ERDF); LL-G: INNVAL20/06 (IDIVAL); RP-F: START PROJECT (FOREUM); RL-M: Miguel Servet type I CP16/00033 (ISCIII-ESF).Disclosure of Interests:Verónica Pulito-Cueto: None declared, Sara Remuzgo Martinez: None declared, Fernanda Genre: None declared, Belén Atienza-Mateo: None declared, Victor Manuel Mora-Cuesta: None declared, David Iturbe-Fernández: None declared, Leticia Lera-Gómez: None declared, Raquel Pérez-Fernández: None declared, Pilar Alonso Lecue: None declared, Javier Rodriguez Carrio: None declared, Diana Prieto-Peña: None declared, Virginia Portilla: None declared, Ricardo Blanco Speakers bureau: Abbvie, Pfizer, Roche, Bristol-Myers, Janssen and MSD, Consultant of: Abbvie, Pfizer, Roche, Bristol-Myers, Janssen and MSD, Grant/research support from: Abbvie, MSD and Roche, Alfonso Corrales: None declared, Jose Manuel Cifrián-Martínez: None declared, Raquel López-Mejías: None declared, Miguel A González-Gay Speakers bureau: Pfizer, Abbvie, MSD, Grant/research support from: Pfizer, Abbvie, MSD


Sign in / Sign up

Export Citation Format

Share Document