neonatal chronic lung disease
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 10)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Jennifer Sucre ◽  
Lena Haist ◽  
Charlotte E. Bolton ◽  
Anne Hilgendorff

Infants suffering from neonatal chronic lung disease, i.e., bronchopulmonary dysplasia, are facing long-term consequences determined by individual genetic background, presence of infections, and postnatal treatment strategies such as mechanical ventilation and oxygen toxicity. The adverse effects provoked by these measures include inflammatory processes, oxidative stress, altered growth factor signaling, and remodeling of the extracellular matrix. Both, acute and long-term consequences are determined by the capacity of the immature lung to respond to the challenges outlined above. The subsequent impairment of lung growth translates into an altered trajectory of lung function later in life. Here, knowledge about second and third hit events provoked through environmental insults are of specific importance when advocating lifestyle recommendations to this patient population. A profound exchange between the different health care professionals involved is urgently needed and needs to consider disease origin while future monitoring and treatment strategies are developed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xueyu Chen ◽  
Junyan Zhong ◽  
Dongshan Han ◽  
Fang Yao ◽  
Jie Zhao ◽  
...  

Bronchopulmonary dysplasia (BPD) is a neonatal chronic lung disease characterized by an arrest in alveolar and vascular development. BPD is secondary to lung immaturity, ventilator-induced lung injury, and exposure to hyperoxia in extremely premature infants, leading to a lifelong impairment of lung function. Recent studies indicate that the lung plays an important role in platelet biogenesis. However, the dynamic change of platelet production during lung development and BPD pathogenesis remains to be elucidated. We investigated the dynamic change of platelet parameters in extremely premature infants during BPD development, and in newborn rats during their normal development from birth to adulthood. We further studied the effect of hyperoxia exposure on platelet production and concomitant pulmonary maldevelopment in an experimental BPD rat model induced by prolonged exposure to hyperoxia. We detected a physiological increase in platelet count from birth to 36 weeks postmenstrual age in extremely premature infants, but platelet counts in extremely premature infants who developed BPD were persistently lower than gestational age-matched controls. In line with clinical findings, exposure to hyperoxia significantly decreased the platelet count in neonatal rats. Lung morphometry analysis demonstrated that platelet counts stabilized with the completion of lung alveolarization in rats. Our findings indicate a close association between platelet biogenesis and alveolarization in the developing lung. This phenomenon might explain the reduced platelet count in extremely premature infants with BPD.


Children ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 213
Author(s):  
Abhrajit Ganguly ◽  
Gaston Ofman ◽  
Peter F Vitiello

Reactive oxygen species (ROS) have been the focus of redox research in the realm of oxidative neonatal respiratory diseases such as bronchopulmonary dysplasia (BPD). Over the years, nitric oxide (NO) and carbon monoxide (CO) have been identified as important gaseous signaling molecules involved in modulating the redox homeostasis in the developing lung. While animal data targeting aspects of these redox pathways have been promising in treating and/or preventing experimental models of neonatal lung disease, none are particularly effective in human neonatal clinical trials. In recent years, hydrogen sulfide (H2S) has emerged as a novel gasotransmitter involved in a magnitude of cellular signaling pathways and functions. The importance of H2S signaling may lie in the fact that early life-forms evolved in a nearly anoxic, sulfur-rich environment and were dependent on H2S for energy. Recent studies have demonstrated an important role of H2S and its synthesizing enzymes in lung development, which normally takes place in a relatively hypoxic intrauterine environment. In this review, we look at clues from evolution and explore the important role that the H2S signaling pathway may play in oxidative neonatal respiratory diseases and discuss future opportunities to explore this phenomenon in the context of neonatal chronic lung disease.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Celien Kuiper-Makris ◽  
Daniela Zanetti ◽  
Christina Vohlen ◽  
Luise Fahle ◽  
Marion Müller ◽  
...  

AbstractIntrauterine growth restriction (IUGR) and low birth weigth (LBW) are risk factors for neonatal chronic lung disease. However, maternal and fetal genetic factors and the molecular mechanisms remain unclear. We investigated the relationship between LBW and lung function with Mendelian randomisation analyses and studied angiogenesis in a low protein diet rat model of IUGR. Our data indicate a possible association between LBW and reduced FEV1 (p = 5.69E−18, MR-PRESSO) and FVC (6.02E-22, MR-PRESSO). Complimentary, we demonstrated two-phased perinatal programming after IUGR. The intrauterine phase (embryonic day 21) is earmarked by a reduction of endothelial cell markers (e.g. CD31) as well as mRNA expression of angiogenic factors (e.g., Vegfa, Flt1, Klf4). Protein analysis identified an activation of anti-angiogenic mTOR effectors. In the postnatal phase, lung capillaries (< 20 µm) were significantly reduced, expression of CD31 and VE-Cadherin were unaffected, whereas SMAD1/5/8 signaling and Klf4 protein were increased (p < 0.01). Moreover, elevated proteolytic activity of MMP2 and MMP9 was linked to a 50% reduction of lung elastic fibres. In conclusion, we show a possible link of LBW in humans and reduced lung function in adulthood. Experimental IUGR identifies an intrauterine phase with inhibition of angiogenic signaling, and a postnatal phase with proteolytic activity and reduced elastic fibres.


Author(s):  
Maryanne E. Ardini-Poleske ◽  
Thomas J. Mariani ◽  
Gloria S. Pryhuber ◽  
Ravi S. Misra ◽  
The LungMAP Consortium

Sign in / Sign up

Export Citation Format

Share Document