The Implication of Cancer Progenitor Cells and the Role of Epigenetics in the Development of Novel Therapeutic Strategies for Chronic Myeloid Leukemia

2015 ◽  
Vol 22 (16) ◽  
pp. 1425-1462 ◽  
Author(s):  
Stephanie M. Tortorella ◽  
Andrew Hung ◽  
Tom C. Karagiannis
Blood ◽  
2013 ◽  
Vol 121 (21) ◽  
pp. 4265-4270 ◽  
Author(s):  
Kai Ling Liang ◽  
Loveena Rishi ◽  
Karen Keeshan

Abstract There is growing research interest in the mammalian Tribbles (Trib) family of serine/threonine pseudokinases and their oncogenic association with acute leukemias. This review is to understand the role of Trib genes in hematopoietic malignancies and their potential as targets for novel therapeutic strategies in acute myeloid leukemia and acute lymphoblastic leukemia. We discuss the role of Tribs as central signaling mediators in different subtypes of acute leukemia and propose that inhibition of dysregulated Trib signaling may be therapeutically beneficial.


2018 ◽  
Vol 52 ◽  
pp. S68-S70 ◽  
Author(s):  
Letizia Mazzini ◽  
Luca Mogna ◽  
Fabiola De Marchi ◽  
Angela Amoruso ◽  
Marco Pane ◽  
...  

2019 ◽  
Vol 5 (6) ◽  
pp. eaaw5075 ◽  
Author(s):  
Guangchang Pei ◽  
Ying Yao ◽  
Qian Yang ◽  
Meng Wang ◽  
Yuxi Wang ◽  
...  

Lymphangiogenesis is associated with chronic kidney disease (CKD) and occurs following kidney transplant. Here, we demonstrate that expanding lymphatic vessels (LVs) in kidneys and corresponding renal draining lymph nodes (RDLNs) play critical roles in promoting intrarenal inflammation and fibrosis following renal injury. Our studies show that lymphangiogenesis in the kidney and RDLN is driven by proliferation of preexisting lymphatic endothelium expressing the essential C-C chemokine ligand 21 (CCL21). New injury-induced LVs also express CCL21, stimulating recruitment of more CCR7+dendritic cells (DCs) and lymphocytes into both RDLNs and spleen, resulting in a systemic lymphocyte expansion. Injury-induced intrarenal inflammation and fibrosis could be attenuated by blocking the recruitment of CCR7+cells into RDLN and spleen or inhibiting lymphangiogenesis. Elucidating the role of lymphangiogenesis in promoting intrarenal inflammation and fibrosis provides a key insight that can facilitate the development of novel therapeutic strategies to prevent progression of CKD-associated fibrosis.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1011 ◽  
Author(s):  
Christine Germeys ◽  
Tijs Vandoorne ◽  
Valérie Bercier ◽  
Ludo Van Den Bosch

Growing evidence suggests that aberrant energy metabolism could play an important role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Despite this, studies applying advanced technologies to investigate energy metabolism in ALS remain scarce. The rapidly growing field of metabolomics offers exciting new possibilities for ALS research. Here, we review existing and emerging metabolomic tools that could be used to further investigate the role of metabolism in ALS. A better understanding of the metabolic state of motor neurons and their surrounding cells could hopefully result in novel therapeutic strategies.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Cornelius Pauli ◽  
Michael Kienhöfer ◽  
Stefanie Göllner ◽  
Carsten Müller-Tidow

Abstract Modifications of RNA commonly occur in all species. Multiple enzymes are involved as writers, erasers and readers of these modifications. Many RNA modifications or the respective enzymes are associated with human disease and especially cancer. Currently, the mechanisms how RNA modifications impact on a large number of intracellular processes are emerging and knowledge about the pathogenetic role of RNA modifications increases. In Acute Myeloid Leukemia (AML), the N 6-methyladenosine (m6A) modification has emerged as an important modulator of leukemogenesis. The writer proteins METTL3 and METTL14 are both involved in AML pathogenesis and might be suitable therapeutic targets. Recently, close links between 2′-O-methylation (2′-O-me) of ribosomal RNA and leukemogenesis were discovered. The AML1-ETO oncofusion protein which specifically occurs in a subset of AML was found to depend on induction of snoRNAs and 2′-O-me for leukemogenesis. Also, NPM1, an important tumor suppressor in AML, was associated with altered snoRNAs and 2′-O-me. These findings point toward novel pathogenetic mechanisms and potential therapeutic interventions. The current knowledge and the implications are the topic of this review.


2012 ◽  
Vol 6 ◽  
pp. CMO.S7244 ◽  
Author(s):  
Tara L. Lin ◽  
M. Yair Levy

Acute myeloid leukemia (AML) is a heterogeneous disease with variable clinical outcomes. Cytogenetic analysis reveals which patients may have favorable risk disease, but 5-year survival in this category is only approximately 60%, with intermediate and poor risk groups faring far worse. Advances in our understanding of the biology of leukemia pathogenesis and prognosis have not been matched with clinical improvements. Unsatisfactory outcomes persist for the majority of patients with AML, particularly the elderly. Novel agents and treatment approaches are needed in the induction, post-remission and relapsed settings. The additions of clofarabine for relapsed or refractory disease and the hypomethylating agents represent recent advances. Clinical trials of FLT3 inhibitors have yielded disappointing results to date, with ongoing collaborations attempting to identify the optimal role for these agents. Potential leukemia stem cell targeted therapies and treatments in the setting of minimal residual disease are also under investigation. In this review, we will discuss recent advances in AML treatment and novel therapeutic strategies.


2019 ◽  
Vol 56 (3) ◽  
pp. 182-199 ◽  
Author(s):  
Seyed Fazel Nabavi ◽  
Antoni Sureda ◽  
Ana Sanches-Silva ◽  
Kasi Pandima Devi ◽  
Touqeer Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document