metabolism pathway
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 144)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 21 (2) ◽  
pp. 496-503
Author(s):  
Hua-yun HUANG ◽  
Zhong LIANG ◽  
Long-zhou LIU ◽  
Chun-miao LI ◽  
Zhen-yang HUANG ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Amin Liu ◽  
Shengzhi Liu ◽  
Yaohan Li ◽  
Minglei Tao ◽  
Haote Han ◽  
...  

Mahonia bealei (M. bealei) is a traditional Chinese medicine containing a high alkaloid content used to treat various diseases. Generally, only dried root and stem are used as medicines, considering that the alkaloid content in M. bealei leaves is lower than in the stems and roots. Some previous research found that alkaloid and flavonoid contents in the M. bealei leaves may increase when exposed to ultraviolet B (UV-B) radiation. However, the underlying mechanism of action is still unclear. In this study, we used titanium dioxide material enrichment and mass-based label-free quantitative proteomics techniques to explore the effect and mechanism of M. bealei leaves when exposed to UV-B treatment. Our data suggest that UV-B radiation increases the ATP content, photosynthetic pigment content, and some enzymatic/nonenzymatic indicators in the leaves of M. bealei. Moreover, phosphoproteomics suggests phosphoproteins related to mitogen-activated protein kinase (MAPK) signal transduction and the plant hormone brassinosteroid signaling pathway as well as phosphoproteins related to photosynthesis, glycolysis, the tricarboxylic acid cycle, and the amino acid synthesis/metabolism pathway are all affected by UV-B radiation. These results suggest that the UV-B radiation activates the oxidative stress response, MAPK signal transduction pathway, and photosynthetic energy metabolism pathway, which may lead to the accumulation of secondary metabolites in M. bealei leaves.


2022 ◽  
Author(s):  
Xing Li ◽  
Lingpu Zhang ◽  
Tuo Li ◽  
Shumu Li ◽  
Wenjing Wu ◽  
...  

Abstract Background: Cisplatin is the most common antitumor alkylating agent of platinum(II) (Pt(II)) in clinic, however it had many side effects. It is necessary to develop low toxicity platinum(IV) (Pt(IV)) drugs. Multi-omics was frequently used to help one understand the mechanism of a certain therapy at the molecular level. Little was known about the mechanism of Pt(IV) drugs, which may be benifical for clinical translation. Methods: We developed a Pt(IV) drug of cisplatin with two hydrophobic aliphatic chains and further encapsulated it with a drug carrier human serum albumin (HSA) to prepare Abplatin(IV). Transcriptomics, metabolomics and lipidomics were performed to clarify the mechanism of Pt(IV) drugs. T-test assay and fold change were used to find the differential substances.Results: We had further shown Abplatin(IV) had better tumor-targeting performance and greater tumor inhibtion rate than cisplatin. Lipidomics study showed that Abplatin(IV) might induce the changes of BEL-7404 cell membrane, and caused the disorder of glycerophospholipids and sphingolipids. In addition, transcriptomics and metabolomics study showed that Abplatin(IV) mainly disturbed more significant purine metabolism pathway than cisplatin.Conclusions: This research highlighted the development of Abplatin(IV) and the use of multi-omics to help one understand the mechanism of action of prodrugs and their DDS, which was the key to the clinical translation of them.


Author(s):  
Nayane S. Lima ◽  
Caroline C. P. Costa ◽  
Leandro do P. Assunção ◽  
Kamilla de F. Santos ◽  
Dhiogo da C. P. Bento ◽  
...  

2021 ◽  
Author(s):  
Xiangjie Guo ◽  
Jiao Jia ◽  
Zhiyong Zhang ◽  
Yuting Miao ◽  
Peng Wu ◽  
...  

Abstract Background: Non-suicidal self-injury (NSSI) is an important symptom of bipolar disorder (BD) and other mental disorders and has attracted the attention of researchers lately. Metabolomics is a relatively new field that can provide complementary insights into data obtained from genomic, transcriptomic, and proteomic analyses of psychiatric disorders. The aim of this study was to identify the metabolic pathways associated with BD with NSSI and assess important diagnostic and predictive indices of NSSI in BD.Method: Nuclear magnetic resonance spectrometry was performed to evaluate the serum metabolic profiles of patients with BD with NSSI (n = 31), patients with BD without NSSI (n = 46), and healthy controls (n = 10). Data were analyzed using an Orthogonal Partial Least Square Discriminant Analysis and a t-test. Differential metabolites were identified (VIP > 1 and p < 0.05), and further analyzed using Metabo Analyst 3.0 to identify associated metabolic pathways.Results: Eight metabolites in the serum and two important metabolic pathways, the urea and glutamate metabolism cycles, were found to distinguish patients with BD with NSSI from healthy controls. Eight metabolites in the serum, glycine and serine metabolism pathway, and the glucose-alanine cycle were found to distinguish patients with BD without NSSI from healthy controls. Five metabolites in the serum and the purine metabolism pathway were found to distinguish patients with BD with NSSI from those with BD without NSSI.Conclusions: Abnormalities in the urea cycle, glutamate metabolism, and purine metabolism played important roles in the pathogenesis of BD with NSSI.


Author(s):  
Tinghui Lv ◽  
Shuting Zhang ◽  
Jingyue Guan ◽  
Meng Li ◽  
Qiaojuan Xing ◽  
...  

Lycopene content is one of important factor for determining watermelon fruit quality. In this study, a small-type watermelon was grown in a greenhouse with supplementary red lighting 10 h per day after pollination 10 days. The results showed that supplementary red lighting promoted the lycopene accumulation earlier in watermelon flesh than the control. qRT-PCR analysis showed that among the lycopene metabolism pathway genes, ClPSY1 (phytoene synthase) expression increased significantly. Moreover, we identified PHYTOCHROME INTERACTING FACTORS 3 (ClPIF3) and bZIP transcription factor ELONGATED HYPOCOTYL 5 (ClHY5) in watermelon flesh, and red light has opposing effects on ClHY5 and ClPIF3 expression levels. The interaction experiments showed that ClHY5, a potent ClPIF3 antagonist, regulated ClPSY1 expression by directly targeting a common promoter cis-element (G-box). Collectively, our findings unraveled that ClHY5 and ClPIF3 form a dynamic activation-suppression transcriptional module responsive to red light cues to regulate watermelon lycopene accumulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhen Ye ◽  
Huanhuan Zhang ◽  
Fanhua Kong ◽  
Jing Lan ◽  
Shuying Yi ◽  
...  

Background. Mitochondria are the energy factories of cells. The abnormality of mitochondrial energy metabolism pathways is closely related to the occurrence and development of lung cancer. The abnormal genes in mitochondrial energy metabolism pathways might be the novel targets and biomarkers to diagnose and treat lung cancers. Method. Genes in major mitochondrial energy metabolism pathways were obtained from the KEGG database. The transcriptomic, mutation, and clinical data of lung cancers were obtained from The Cancer Genome Atlas (TCGA) database. Genes and clinical biomarkers were mined that affected lung cancer survival. Gene enrichment analysis was performed with ClusterProfiler and the gene set enrichment analysis (GSEA). STRING database and Cytoscape were used for protein-protein interaction (PPI) analysis. The diagnostic biomarker pattern of lung cancer was optimized, and its accuracy was verified with 10-fold cross-validation. The four genes screened by logistic regression model were verified by western blot in 5 pairs of lung cancer specimens collected in hospital. Results. In total, 188 mitochondrial energy metabolism pathway-related genes (MMRGs) were included in this study. GSEA analysis found that MMRGs in the lung cancer group were mainly enriched in the metabolic pathway of oxidative phosphorylation and electron respiratory transport chain compared to the control group. Age did not affect the mutation frequency of MMRGs. Comparative analysis of these 188 MMRGs identified 43 differentially expressed MMRGs (24 upregulated and 19 downregulated) in the lung cancer group compared to the control group. The survival analysis of these 43 differentially expressed MMRGs found that the survival time was better in the low-expressed GAPDHS group than that in the high-expressed GAPDHS group of lung cancers. The advanced age, high expression of GAPDHS, low expressions of ACSBG1 and CYP4A11, and ACOX3 mutation were biomarkers of poor prognosis in lung cancers. PPI analysis showed that proteins such as GAPDH and GAPDHS interacted with many proteins in mitochondrial metabolic pathways. A four-MMRG-signature model ( y = 0.0069 ∗ ACADL − 0.001 ∗ ALDH 18 A 1 − 0.0405 ∗ CPT 1 B + 0.0008 ∗ PPARG − 1.625 ) was established to diagnose lung cancer with the accuracy up to 98.74%, AUC value up to 0.992, and a missed diagnosis rate of only 0.6%. Western blotting showed that ALDH18A1 and CPT1B proteins were significantly overexpressed in the lung cancer group ( p < 0.05 ), and ACADL and PPARG proteins were slightly underexpressed in the lung cancer group ( p < 0.05 ), which were consistent with the results of their corresponding mRNA expressions. Conclusion. Mitochondrial energy metabolism pathway alterations are the important hallmarks of lung cancer. Age did not increase the risk of MMRG mutation. High expression of GAPDHS, low expression of ACSBG1, low expression of CYP4A11, mutated ACOX3, and old age predict a poor prognosis of lung cancer. Four differentially expressed MMRGs (ACADL, ALDH18A1, CPT1B, and PPARG) established a logistic regression model, which could effectively diagnose lung cancer. At the protein level, ALDH18A1 and CPT1B were significantly upregulated, and ACADL and PPARG were slightly underexpressed, in the lung cancer group compared to the control group, which were consistent with the results of their corresponding mRNA expressions.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1405
Author(s):  
Hueng-Chuen Fan ◽  
Fung-Wei Chang ◽  
Jeng-Dau Tsai ◽  
Kao-Min Lin ◽  
Chuan-Mu Chen ◽  
...  

Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.


Sign in / Sign up

Export Citation Format

Share Document