scholarly journals High pCO2 Reduces Sensitivity to CO2 Perturbations on Temperate, Earth-Like Planets Throughout Most of Habitable Zone

Astrobiology ◽  
2021 ◽  
Author(s):  
Robert J. Graham
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Owen R. Lehmer ◽  
David C. Catling ◽  
Joshua Krissansen-Totton

AbstractIn the conventional habitable zone (HZ) concept, a CO2-H2O greenhouse maintains surface liquid water. Through the water-mediated carbonate-silicate weathering cycle, atmospheric CO2 partial pressure (pCO2) responds to changes in surface temperature, stabilizing the climate over geologic timescales. We show that this weathering feedback ought to produce a log-linear relationship between pCO2 and incident flux on Earth-like planets in the HZ. However, this trend has scatter because geophysical and physicochemical parameters can vary, such as land area for weathering and CO2 outgassing fluxes. Using a coupled climate and carbonate-silicate weathering model, we quantify the likely scatter in pCO2 with orbital distance throughout the HZ. From this dispersion, we predict a two-dimensional relationship between incident flux and pCO2 in the HZ and show that it could be detected from at least 83 (2σ) Earth-like exoplanet observations. If fewer Earth-like exoplanets are observed, testing the HZ hypothesis from this relationship could be difficult.


2003 ◽  
Vol 2 (1) ◽  
pp. 35-39 ◽  
Author(s):  
S. Franck ◽  
M. Cuntz ◽  
W. von Bloh ◽  
C. Bounama

In a previous paper, we showed that Earth-type habitable planets around 47 UMa are in principle possible if a distinct set of conditions is warranted. These conditions include that the Earth-type planets have successfully formed and are orbitally stable and, in addition, that the 47 UMa star–planet system is relatively young ([lsim ]6 Gyr). We now extend this study by considering Earth-like planets with different land/ocean coverages. This study is again based on the so-called integrated system approach, which describes the photosynthetic biomass production taking into account a variety of climatological, biogeochemical and geodynamical processes. This approach implies a special characterization of the habitable zone defined for a distinct type of planet. We show that the likelihood of finding a habitable Earth-like planet on a stable orbit around 47 UMa critically depends on the percentage of the planetary land/ocean coverage. The likelihood is significantly increased for planets with a very high percentage of ocean surface (‘water worlds’).


2019 ◽  
Vol 492 (1) ◽  
pp. 352-368 ◽  
Author(s):  
Giorgi Kokaia ◽  
Melvyn B Davies ◽  
Alexander J Mustill

ABSTRACT We investigate the possibility of finding Earth-like planets in the habitable zone of 34 nearby FGK-dwarfs, each known to host one giant planet exterior to their habitable zone detected by RV. First we simulate the dynamics of the planetary systems in their present day configurations and determine the fraction of stable planetary orbits within their habitable zones. Then, we postulate that the eccentricity of the giant planet is a result of an instability in their past during which one or more other planets were ejected from the system. We simulate these scenarios and investigate whether planets orbiting in the habitable zone survive the instability. Explicitly we determine the fraction of test particles, originally found in the habitable zone, which remain in the habitable zone today. We label this fraction the resilient habitability of a system. We find that for most systems the probability of planets existing [or surviving] on stable orbits in the habitable zone becomes significantly smaller when we include a phase of instability in their history. We present a list of candidate systems with high resilient habitability for future observations. These are: HD 95872, HD 154345, HD 102843, HD 25015, GJ 328, HD 6718, and HD 150706. The known planets in the last two systems have large observational uncertainties on their eccentricities, which propagate into large uncertainties on their resilient habitability. Further observational constraints of these two eccentricities will allow us to better constrain the survivability of Earth-like planets in these systems.


2000 ◽  
Vol 48 (11) ◽  
pp. 1099-1105 ◽  
Author(s):  
S Franck ◽  
A Block ◽  
W von Bloh ◽  
C Bounama ◽  
H.-J Schellnhuber ◽  
...  

2014 ◽  
Vol 10 (S305) ◽  
pp. 325-332 ◽  
Author(s):  
Luca Fossati ◽  
Stefano Bagnulo ◽  
Carole A. Haswell ◽  
Manish R. Patel ◽  
Richard Busuttil ◽  
...  

AbstractThere are several ways planets can survive the giant phase of the host star, hence one can consider the case of Earth-like planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU from the star would remain in the continuous habitable zone (CHZ) for about 8 Gyr. Polarisation due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 102 (104) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a powerful tool to detect close-in planets around white dwarfs. Multi-band polarimetry would also allow one to reveal the presence of a planet atmosphere, even providing a first characterisation. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue. Preliminary habitability study show also that photosynthetic processes can be sustained on Earth-like planets orbiting CWDs and that the DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, hence white dwarfs are compatible with the persistence of complex life from the perspective of UV irradiation.


2013 ◽  
Vol 8 (S299) ◽  
pp. 338-339 ◽  
Author(s):  
S. Ertel ◽  
J.-C. Augereau ◽  
P. Thébault ◽  
O. Absil ◽  
A. Bonsor ◽  
...  

AbstractExozodiacal dust clouds are thought to be the extrasolar analogs of the Solar System's zodiacal dust. Studying these systems provides insights in the architecture of the innermost regions of planetary systems, including the Habitable Zone. Furthermore, the mere presence of the dust may result in major obstacles for direct imaging of earth-like planets. Our EXOZODI project aims to detect and study exozodiacal dust and to explain its origin. We are carrying out the first large, near-infrared interferometric survey in the northern (CHARA/FLUOR) and southern (VLTI/PIONIER) hemispheres. Preliminary results suggest a detection rate of up to 30% around A to K type stars and interesting trends with spectral type and age. We focus here on presenting the observational work carried out by our team.


Author(s):  
Z Lin ◽  
L Kaltenegger

ABSTRACT The closest stars that harbor potentially habitable planets are cool M-stars. Upcoming ground- and space-based telescopes will be able to search the atmosphere of such planets for a range of chemicals. To facilitate this search and to inform upcoming observations, we model the high-resolution reflection spectra of two of the closest potentially habitable exoplanets for a range of terrestrial atmospheres and surface pressures for active and inactive phases of their host stars for both oxic and anoxic conditions: Proxima b, the closest potentially habitable exoplanet, and Trappist-1e, one of 3 Earth-size planets orbiting in the Habitable Zone of Trappist-1. We find that atmospheric spectral features, including biosignatures like O2 in combination with a reduced gas like CH4 for oxic atmospheres, as well as climate indicators like CO2 and H2O for all atmospheres, show absorption features in the spectra of Proxima b and Trappist-1e models. However for some features like oxygen, high-resolution observations will be critical to identify them in a planet's reflected flux. Thus these two planets will be among the best targets for upcoming observations of potential Earth-like planets in reflected light with planned Extremely Large Telescopes.


2010 ◽  
Vol 6 (S276) ◽  
pp. 359-370 ◽  
Author(s):  
Giovanna Tinetti ◽  
James Y-K. Cho ◽  
Caitlin A. Griffith ◽  
Olivier Grasset ◽  
Lee Grenfell ◽  
...  

AbstractThe science of extra-solar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 560-plus planets being detected, and over 1200 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are?In the past ten years, we have learned how to obtain the first spectra of exoplanets using transit transmission and emission spectroscopy. With the high stability of Spitzer, Hubble, and large ground-based telescopes the spectra of bright close-in massive planets can be obtained and species like water vapour, methane, carbon monoxide and dioxide have been detected. With transit science came the first tangible remote sensing of these planetary bodies and so one can start to extrapolate from what has been learnt from Solar System probes to what one might plan to learn about their faraway siblings. As we learn more about the atmospheres, surfaces and near-surfaces of these remote bodies, we will begin to build up a clearer picture of their construction, history and suitability for life.The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of Exoplanetary Atmospheres. By characterising spectroscopically more bodies in different environments we will take detailed planetology out of the Solar System and into the Galaxy as a whole.EChO has now been selected by the European Space Agency to be assessed as one of four M3 mission candidates.


2012 ◽  
Vol 11 (4) ◽  
pp. 297-307 ◽  
Author(s):  
L. Kaltenegger ◽  
Y. Miguel ◽  
S. Rugheimer

AbstractA decade of exoplanet search has led to surprising discoveries, from giant planets close to their star, to planets orbiting two stars, all the way to the first extremely hot, rocky worlds with potentially permanent lava on their surfaces due to the star's proximity. Observation techniques have reached the sensitivity to explore the chemical composition of the atmospheres as well as physical structure of some detected gas planets and detect planets of less than 10 Earth masses (MEarth), the so-called super-Earths, among them some that may potentially be habitable. Three confirmed non-transiting planets, and several transiting Kepler planetary candidates, orbit in the habitable zone (HZ) of their host star. The detection and characterization of rocky and potentially Earth-like planets is approaching rapidly with future ground and space missions that can explore the planetary environments by analysing their atmosphere remotely. This paper discusses how to characterize a rocky exoplanet remotely.


Sign in / Sign up

Export Citation Format

Share Document