scholarly journals Unraveling the Mystery of Exozodiacal Dust

2013 ◽  
Vol 8 (S299) ◽  
pp. 338-339 ◽  
Author(s):  
S. Ertel ◽  
J.-C. Augereau ◽  
P. Thébault ◽  
O. Absil ◽  
A. Bonsor ◽  
...  

AbstractExozodiacal dust clouds are thought to be the extrasolar analogs of the Solar System's zodiacal dust. Studying these systems provides insights in the architecture of the innermost regions of planetary systems, including the Habitable Zone. Furthermore, the mere presence of the dust may result in major obstacles for direct imaging of earth-like planets. Our EXOZODI project aims to detect and study exozodiacal dust and to explain its origin. We are carrying out the first large, near-infrared interferometric survey in the northern (CHARA/FLUOR) and southern (VLTI/PIONIER) hemispheres. Preliminary results suggest a detection rate of up to 30% around A to K type stars and interesting trends with spectral type and age. We focus here on presenting the observational work carried out by our team.

2019 ◽  
Vol 625 ◽  
pp. L6 ◽  
Author(s):  
N. Meunier ◽  
A.-M. Lagrange

Context. Magnetic activity and surface flows at different scales pertub radial velocity measurements. This affects the detectability of low-mass exoplanets. Aims. In these flows, the effect of supergranulation is not as well characterized as the other flows, and we wish to estimate its effect on the detection of Earth-like planets in the habitable zone of Sun-like stars. Methods. We produced time series of radial velocities due to oscillations, granulation, and supergranulation, and estimated the detection limit for a G2 star and a period of 300 days. We also studied in detail the behavior of the power when the signal of a 1 MEarth planet was superposed on the signal from the stellar flows. Results. We find that the detection rate does not reach 100% except for the supergranulation level we assume, which is still optimistic, and for an excellent sampling. Conclusions. We conclude that with current knowledge, it is a very challenging task to find Earth twins around Sun-like stars with our current capabilities.


2013 ◽  
Vol 8 (S299) ◽  
pp. 332-333
Author(s):  
D. Defrère ◽  
P. Hinz ◽  
B. Mennesson ◽  
R. Millan-Gabet ◽  
A. Skemer ◽  
...  

AbstractThe possible presence of dust in the habitable zone around nearby main-sequence stars is considered as a major hurdle toward the direct imaging of Earth-like extrasolar planets with future dedicated space-based telescopes (e.g., Roberge et al. 2012). In this context, NASA has funded two ground-based mid-infrared nulling interferometers to combine the large apertures available at the Keck Observatory and the Large Binocular Telescope (LBT). In this poster, we present the preliminary results of the extended survey carried out with the Keck Interferometer Nuller (KIN) between 2008 and 2011 and describe the forthcoming LBTI survey.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Owen R. Lehmer ◽  
David C. Catling ◽  
Joshua Krissansen-Totton

AbstractIn the conventional habitable zone (HZ) concept, a CO2-H2O greenhouse maintains surface liquid water. Through the water-mediated carbonate-silicate weathering cycle, atmospheric CO2 partial pressure (pCO2) responds to changes in surface temperature, stabilizing the climate over geologic timescales. We show that this weathering feedback ought to produce a log-linear relationship between pCO2 and incident flux on Earth-like planets in the HZ. However, this trend has scatter because geophysical and physicochemical parameters can vary, such as land area for weathering and CO2 outgassing fluxes. Using a coupled climate and carbonate-silicate weathering model, we quantify the likely scatter in pCO2 with orbital distance throughout the HZ. From this dispersion, we predict a two-dimensional relationship between incident flux and pCO2 in the HZ and show that it could be detected from at least 83 (2σ) Earth-like exoplanet observations. If fewer Earth-like exoplanets are observed, testing the HZ hypothesis from this relationship could be difficult.


2003 ◽  
Vol 2 (1) ◽  
pp. 35-39 ◽  
Author(s):  
S. Franck ◽  
M. Cuntz ◽  
W. von Bloh ◽  
C. Bounama

In a previous paper, we showed that Earth-type habitable planets around 47 UMa are in principle possible if a distinct set of conditions is warranted. These conditions include that the Earth-type planets have successfully formed and are orbitally stable and, in addition, that the 47 UMa star–planet system is relatively young ([lsim ]6 Gyr). We now extend this study by considering Earth-like planets with different land/ocean coverages. This study is again based on the so-called integrated system approach, which describes the photosynthetic biomass production taking into account a variety of climatological, biogeochemical and geodynamical processes. This approach implies a special characterization of the habitable zone defined for a distinct type of planet. We show that the likelihood of finding a habitable Earth-like planet on a stable orbit around 47 UMa critically depends on the percentage of the planetary land/ocean coverage. The likelihood is significantly increased for planets with a very high percentage of ocean surface (‘water worlds’).


2021 ◽  
Author(s):  
N Abu Freha ◽  
M Abu Tailakh ◽  
O Abu-Freha ◽  
A Estis-Deaton ◽  
J Elkrinawi ◽  
...  

1994 ◽  
Vol 154 ◽  
pp. 205-210
Author(s):  
Y. Suematsu ◽  
H. Fukushima ◽  
Y. Nishino

Coronal images were taken in the light of the He I 10830 Å line, the 10000 Å continuum, and the Fe XIV 5303 Å line, with the aim of studying the thermal structure of the corona. In addition, spectroscopic observations were made in the violet wavelength region (3760-4060 Å) and near-infrared (10745-10835 Å), to obtain details of physical conditions of the corona, especially of its cool part. The data obtained do not show any distinct cool structures other than ordinary prominences. Some preliminary results concerning the corona and prominence structures are given.


1993 ◽  
Vol 155 ◽  
pp. 340-340 ◽  
Author(s):  
R.E.S. Clegg ◽  
N. A. Walton ◽  
M.J. Barlow

It is not really known how low and intermediate mass stars eject mass to form PNs. We present preliminary results from a programme of near–IR imaging, in which we study a sequence of objects, from extreme AGB stars through proto–planetaries to young, compact PNs. We aim to study the sequence of morphologies, to see where the onset of bipolar shaping occurs, and to use the IR molecular hydrogen lines to map neutral regions around ionized nebulae.


2019 ◽  
Vol 492 (1) ◽  
pp. 352-368 ◽  
Author(s):  
Giorgi Kokaia ◽  
Melvyn B Davies ◽  
Alexander J Mustill

ABSTRACT We investigate the possibility of finding Earth-like planets in the habitable zone of 34 nearby FGK-dwarfs, each known to host one giant planet exterior to their habitable zone detected by RV. First we simulate the dynamics of the planetary systems in their present day configurations and determine the fraction of stable planetary orbits within their habitable zones. Then, we postulate that the eccentricity of the giant planet is a result of an instability in their past during which one or more other planets were ejected from the system. We simulate these scenarios and investigate whether planets orbiting in the habitable zone survive the instability. Explicitly we determine the fraction of test particles, originally found in the habitable zone, which remain in the habitable zone today. We label this fraction the resilient habitability of a system. We find that for most systems the probability of planets existing [or surviving] on stable orbits in the habitable zone becomes significantly smaller when we include a phase of instability in their history. We present a list of candidate systems with high resilient habitability for future observations. These are: HD 95872, HD 154345, HD 102843, HD 25015, GJ 328, HD 6718, and HD 150706. The known planets in the last two systems have large observational uncertainties on their eccentricities, which propagate into large uncertainties on their resilient habitability. Further observational constraints of these two eccentricities will allow us to better constrain the survivability of Earth-like planets in these systems.


2020 ◽  
Vol 492 (4) ◽  
pp. 5709-5720
Author(s):  
Loic Nassif-Lachapelle ◽  
Daniel Tamayo

ABSTRACT Direct imaging surveys have found that long-period super-Jupiters are rare. By contrast, recent modelling of the widespread gaps in protoplanetary discs revealed by Atacama Large Millimetre Array suggests an abundant population of smaller Neptune to Jupiter-mass planets at large separations. The thermal emission from such lower-mass planets is negligible at optical and near-infrared wavelengths, leaving only their weak signals in reflected light. Planets do not scatter enough light at these large orbital distances, but there is a natural way to enhance their reflecting area. Each of the four giant planets in our Solar system hosts swarms of dozens of irregular satellites, gravitationally captured planetesimals that fill their host planets’ spheres of gravitational influence. What we see of them today are the leftovers of an intense collisional evolution. At early times, they would have generated bright circumplanetary debris discs. We investigate the properties and detectability of such irregular satellite discs (ISDs) following models for their collisional evolution from Kennedy & Wyatt (2011). We find that the scattered light signals from such ISDs would peak in the 10–100 au semimajor axis range implied by ALMA, and can render planets detectable over a wide range of parameters with upcoming high-contrast instrumentation. We argue that future instruments with wide fields of view could simultaneously characterize the atmospheres of known close-in planets, and reveal the population of long-period Neptune–Jupiter mass exoplanets inaccessible to other detection methods. This provides a complementary and compelling science case that would elucidate the early lives of planetary systems.


Sign in / Sign up

Export Citation Format

Share Document