Human Dendritic Cells Engineered to Express Alpha Tumor Necrosis Factor Maintain Cellular Maturation and T-Cell Stimulation Capacity

2006 ◽  
Vol 21 (6) ◽  
pp. 613-622 ◽  
Author(s):  
Zhenmin Ye ◽  
Zhuang Chen ◽  
Amer Sami ◽  
Ali El-Gayed ◽  
Jim Xiang
1997 ◽  
Vol 186 (9) ◽  
pp. 1603-1608 ◽  
Author(s):  
Claudia Rieser ◽  
Günther Böck ◽  
Helmut Klocker ◽  
Georg Bartsch ◽  
Martin Thurnher

Interleukin (IL)-12 is a proinflammatory cytokine that contributes to innate resistance and to the development of antigen-specific T cell responses. Among other effects, prostaglandin E2 (PGE2) inhibits the production of IL-12 by macrophages activated with lipopolysaccharide (LPS). Here we investigated the effects of PGE2 on human dendritic cells (DCs) which develop in the presence of GM-CSF and IL-4. We demonstrate that in the absence of LPS, PGE2 dose dependently stimulated the production of IL-12 by DCs. Although PGE2 alone stimulated the production of low amounts of IL-12 only, it synergized with tumor necrosis factor (TNF)-α to induce high levels of IL-12 production by DCs. Addition of TNF-α in the absence of PGE2 had no effect on IL-12 production. Conversely, in the presence of LPS, PGE2 inhibited IL-12 production by DCs in a dose-dependent manner. The combination of PGE2 and TNF-α efficiently silenced mannose receptor–mediated endocytosis in DCs and readily induced neo-expression of the CD83 antigen. In addition, the expression of various surface antigens such as major histocompatibility complex class I and II, adhesion, as well as costimulatory molecules was upregulated by this treatment. The effects of PGE2 on IL-12 synthesis and CD83 expression could be mimicked by dibutyryl-cAMP and forskolin, indicating that they were due to the intracellular elevation of cAMP levels. DC treated with PGE2 and TNF-α were most potent in stimulating allogeneic T cell proliferation. Our data demonstrate that PGE2 contributes to the maturation of human DCs and that PGE2 can be a potent enhancer of IL-12 production by human DCs.


2001 ◽  
Vol 195 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Mauritius Menges ◽  
Susanne Rößner ◽  
Constanze Voigtländer ◽  
Heike Schindler ◽  
Nicole A. Kukutsch ◽  
...  

Mature dendritic cells (DCs) are believed to induce T cell immunity, whereas immature DCs induce T cell tolerance. Here we describe that injections of DCs matured with tumor necrosis factor (TNF)-α (TNF/DCs) induce antigen-specific protection from experimental autoimmune encephalomyelitis (EAE) in mice. Maturation by TNF-α induced high levels of major histocompatibility complex class II and costimulatory molecules on DCs, but they remained weak producers of proinflammatory cytokines. One injection of such TNF/DCs pulsed with auto-antigenic peptide ameliorated the disease score of EAE. This could not be observed with immature DCs or DCs matured with lipopolysaccharide (LPS) plus anti-CD40. Three consecutive injections of peptide-pulsed TNF/DCs derived from wild-type led to the induction of peptide-specific predominantly interleukin (IL)-10–producing CD4+ T cells and complete protection from EAE. Blocking of IL-10 in vivo could only partially restore the susceptibility to EAE, suggesting an important but not exclusive role of IL-10 for EAE prevention. Notably, the protection was peptide specific, as TNF/DCs pulsed with unrelated peptide could not prevent EAE. In conclusion, this study describes that stimulation by TNF-α results in incompletely matured DCs (semi-mature DCs) which induce peptide-specific IL-10–producing T cells in vivo and prevent EAE.


2000 ◽  
Vol 74 (1) ◽  
pp. 556-559 ◽  
Author(s):  
Pierre-Olivier Vidalain ◽  
Olga Azocar ◽  
Barbara Lamouille ◽  
Anne Astier ◽  
Chantal Rabourdin-Combe ◽  
...  

ABSTRACT Measles virus infection induces a profound immunosuppression that can lead to serious secondary infections. Here we demonstrate that measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression in human monocyte-derived dendritic cells. Moreover, measles virus-infected dendritic cells are shown to be cytotoxic via the TRAIL pathway.


2000 ◽  
Vol 275 (26) ◽  
pp. 19638-19644 ◽  
Author(s):  
Clara Paolucci ◽  
Patrizia Rovere ◽  
Céline De Nadai ◽  
Angelo A. Manfredi ◽  
Emilio Clementi

2000 ◽  
Vol 191 (3) ◽  
pp. 495-502 ◽  
Author(s):  
Régis Josien ◽  
Hong-Li Li ◽  
Elizabeth Ingulli ◽  
Supria Sarma ◽  
Brian R.Wong ◽  
...  

Mature dendritic cells (DCs) are powerful antigen presenting cells that have the unique capacity to migrate to the T cell zone of draining lymph nodes after subcutaneous injection. Here we report that treatment of antigen-pulsed mature DCs with tumor necrosis factor (TNF)-related activation-induced cytokine (TRANCE), a TNF family member, before immunization enhances their adjuvant capacity and elicits improved T cell priming in vivo, such that both primary and memory T cell immune responses are enhanced. By enumerating migratory DCs in the draining lymph nodes and by studying their function in stimulating naive T cells, we show that one of the underlying mechanisms for enhanced T cell responses is an increase in the number of ex vivo antigen-pulsed DCs that are found in the T cell areas of lymph nodes. These results suggest that the longevity and abundance of mature DCs at the site of T cell priming influence the strength of the DC-initiated T cell immunity in situ. Our findings have the potential to improve DC-based immunotherapy; i.e., the active immunization of humans with autologous DCs that have been pulsed with clinically significant antigens ex vivo.


Sign in / Sign up

Export Citation Format

Share Document