Effect of Temperatures on the Growth, Toxin Production, and Heat Resistance of Bacillus cereus in Cooked Rice

2014 ◽  
Vol 11 (2) ◽  
pp. 133-137 ◽  
Author(s):  
Jun Wang ◽  
Tian Ding ◽  
Deog-Hwan Oh
1974 ◽  
Vol 73 (3) ◽  
pp. 433-444 ◽  
Author(s):  
R. J. Gilbert ◽  
M. F. Stringer ◽  
T. C. Peace

SummaryA number of outbreaks of food poisoning attributed toBacillus cereushave been reported recently and all have been associated with cooked rice usually from Chinese restaurants and ‘take-away’ shops.Tests were made to assess the heat resistance ofB. cereusspores in aqueous suspension, the growth of the organism in boiled rice stored at temperatures in the range 4–55° C., and the effect of cooking and storage on the growth of the organism in boiled and fried rice. The spores ofB. cereussurvived cooking and were capable of germination and outgrowth. The optimum temperature for growth in boiled rice was between 30° and 37° C. and growth also occurred during storage at 15° and 43° C.To prevent further outbreaks it is suggested that rice should be boiled in smaller quantities on several occasions during the day, thereby reducing the storage time before frying. After boiling the rice should either be kept hot (> 63° C.) or cooled quickly and transferred to a refrigerator within 2 hr. of cooking. Boiled or fried rice must not be stored under warm conditions especially in the range 15–50° C.


2002 ◽  
Vol 19 (5) ◽  
pp. 431-439 ◽  
Author(s):  
W.J. J. Finlay ◽  
N.A. Logan ◽  
A.D. Sutherland

1980 ◽  
Vol 84 (1) ◽  
pp. 77-82 ◽  
Author(s):  
Jennifer M. Parry ◽  
R. J. Gilbert

SUMMARYA comparison was made of the heat resistance ofBacillus cereusspores at 95° C. Spores of serotype 1 strains were more resistant than those of the other types tested. However, there was little difference in the growth rate of the various serotypes in boiled rice at 22° C. Most samples of uncooked rice contained multiple serotypes ofB. cereus.These results indicate that the cooking procedure used for the preparation of cooked rice is likely to be selective for certain serotypes, and this is the most likely reason why type 1 is the most common serotype implicated in outbreaks of food poisoning and can be isolated from many routine samples of cooked rice.


2012 ◽  
Vol 2 (9) ◽  
Author(s):  
Jun Wang ◽  
Seung-Ya Yang ◽  
Hyeon-Kyung Ham ◽  
Myoung-Su Park ◽  
Xi-Hong Zhao ◽  
...  

2007 ◽  
Vol 70 (12) ◽  
pp. 2774-2781 ◽  
Author(s):  
I-CHEN YANG ◽  
DANIEL YANG-CHIH SHIH ◽  
JAN-YI WANG ◽  
TZU-MING PAN

Members of the Bacillus cereus group may produce diarrheal enterotoxins and could be potential hazards if they enter the food chain. Therefore, a method capable of detecting all the species in the B. cereus group rather than B. cereus alone is important. We selected nhe as the target and developed a real-time PCR assay to quantify enterotoxigenic strains of the B. cereus group. The real-time PCR assay was evaluated with 60 B. cereus group strains and 28 others. The assay was also used to construct calibration curves for different food matrices and feces. The assay has an excellent quantification capacity, as proved by its linearity (R2 > 0.993), wide dynamic quantification range (102 to 107 CFU/g for cooked rice and chicken, 103 to 107 CFU/ml for milk, and 104 to 107 CFU/g for feces), and adequate relative accuracy (85.5 to 101.1%). For the low-level contaminations, a most-probable-number real-time PCR assay was developed that could detect as low as 100 CFU/ml. Both assays were tested with real food samples and shown to be considerably appropriate for B. cereus group detection and quantification.


2008 ◽  
Vol 76 (4) ◽  
pp. 1358-1367 ◽  
Author(s):  
A. L. Moyer ◽  
R. T. Ramadan ◽  
J. Thurman ◽  
A. Burroughs ◽  
M. C. Callegan

ABSTRACT Most Bacillus cereus toxin production is controlled by the quorum-sensing-dependent, pleiotropic global regulator plcR, which contributes to the organism's virulence in the eye. The purpose of this study was to analyze the effects of B. cereus infection and plcR-regulated toxins on the barrier function of retinal pigment epithelium (RPE) cells, the primary cells of the blood-retina barrier. Human ARPE-19 cells were apically inoculated with wild-type or quorum-sensing-deficient B. cereus, and cytotoxicity was analyzed. plcR-regulated toxins were not required for B. cereus-induced RPE cytotoxicity, but these toxins did increase the rate of cell death, primarily by necrosis. B. cereus infection of polarized RPE cell monolayers resulted in increased barrier permeability, independent of plcR-regulated toxins. Loss of both occludin and ZO-1 expression occurred by 8 h postinfection, but alterations in tight junctions appeared to precede cytotoxicity. Of the several proinflammatory cytokines analyzed, only interleukin-6 was produced in response to B. cereus infection. These results demonstrate the deleterious effects of B. cereus infection on RPE barrier function and suggest that plcR-regulated toxins may not contribute significantly to RPE barrier permeability during infection.


1990 ◽  
Vol 53 (9) ◽  
pp. 790-792 ◽  
Author(s):  
M. W. GRIFFITHS

Using a reversed passive latex agglutination assay, about 85% of psychrotrophic Bacillus spp. tested were shown to produce diarrhoegenic toxin during growth on brain heart infusion broth at 25°C. The majority of these strains were identified as Bacillus cereus or cereus-related strains. However, a number of other species was capable of synthesizing the toxin. Further investigation of four psychrotrophic Bacilli showed that the toxin was produced during growth in milk at temperatures ranging from 6 to 21°C. Toxin production increased with increasing temperatures and was not synthesized in appreciable quantities until the bacterial count exceeded 1 × 107 cfu/ml.


2007 ◽  
Vol 7 (1) ◽  
pp. 43 ◽  
Author(s):  
Annette Fagerlund ◽  
Julien Brillard ◽  
Rainer Fürst ◽  
Marie-Hélène Guinebretière ◽  
Per Granum

1994 ◽  
Vol 57 (10) ◽  
pp. 874-877 ◽  
Author(s):  
I. JENSON ◽  
L. BAIRD ◽  
J. DELVES-BROUGHTON

Crumpets, a high moisture flour based product, have been implicated in food poisoning due to growth and toxin production by naturally occurring Bacillus cereus during 5-day storage at ambient temperature. Bacillus cereus isolates from untreated crumpets at the end of their shelf-life were shown to be sensitive to nisin. Addition of nisin to the batter at levels of 3.75 μg/g and above effectively prevented the growth to levels capable of causing food poisoning. The fate of nisin during the production and shelf-life of the crumpet was determined.


Sign in / Sign up

Export Citation Format

Share Document