scholarly journals Exosomes Derived from Bone Mesenchymal Stem Cells Repair Traumatic Spinal Cord Injury by Suppressing the Activation of A1 Neurotoxic Reactive Astrocytes

2019 ◽  
Vol 36 (3) ◽  
pp. 469-484 ◽  
Author(s):  
Wei Liu ◽  
Yongxiang Wang ◽  
Fangyi Gong ◽  
Yuluo Rong ◽  
Yongjun Luo ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Rui-Ping Zhang ◽  
Ling-Jie Wang ◽  
Sheng He ◽  
Jun Xie ◽  
Jian-Ding Li

Despite advances in our understanding of spinal cord injury (SCI) mechanisms, there are still no effective treatment approaches to restore functionality. Although many studies have demonstrated that transplantingNT3gene-transfected bone marrow-derived mesenchymal stem cells (BMSCs) is an effective approach to treat SCI, the approach is often low efficient in the delivery of engrafted BMSCs to the site of injury. In this study, we investigated the therapeutic effects of magnetic targeting ofNT3gene-transfected BMSCs via lumbar puncture in a rat model of SCI. With the aid of a magnetic targeting cells delivery system, we can not only deliver the engrafted BMSCs to the site of injury more efficiently, but also perform cells imaging in vivo using MR. In addition, we also found that this composite strategy could significantly improve functional recovery and nerve regeneration compared to transplantingNT3gene-transfected BMSCs without magnetic targeting system. Our results suggest that this composite strategy could be promising for clinical applications.


2021 ◽  
Vol 18 ◽  
pp. 309-315
Author(s):  
Yijia Jia ◽  
Jianwen Yang ◽  
Tingsheng Lu ◽  
Xingwei Pu ◽  
Qiling Chen ◽  
...  

2021 ◽  
Author(s):  
Tsung-Cheng Yin ◽  
Pei-Lin Shao ◽  
Kuan-Hung Chen ◽  
Kun-Chen Lin ◽  
John Y. Chiang ◽  
...  

Abstract Background: This study tested whether combined hyperbaric oxygen (HBO) and allogenic adipose-derived mesenchymal stem cells (ADMSCs) would be superior to either one for improving the neurological function in rat after acute traumatic spinal cord injury (TSCI) in rat. Methods and Results: Adult-male SD rats (n=40) were equally categorized into group 1 (sham-operated control), group 2 (TSCI), group 3 (TSCI + HBO for 1.5h/day for 14 consecutive days after TSCI), group 4 (TSCI + ADMSCs/1.2x106 cells by intravenous injection at 3h and days 1/2 after TSCI) and group 5 (TSCI + HBO + ADMSCs), euthanized and spinal-cord tissue was harvested by day 49 after TSCI. The result showed that the protein expressions of oxidative-stress (NOX-1/NOX-2), inflammatory-signaling (TLR-4/MyD88/IL-1ß/TNF-α/substance-p), cell-stress signaling (PI3K/p-AKT/p-mTOR) and the voltage gated sodium channel (Nav1.3/1.8/1.9) biomarkers were highest in group 2, lowest in group 1 and significantly lower in group 5 than in groups 3/4 (all p<0.0001), but they did not differ between groups 3/4. The spinal cord-damaged area, the cellular levels of inflammatory/DNA-damaged (CD68+/GFAP+/γ-H2AX+ cells), MAPK family biomarkers (p-P38/p-JNK/p-ERK1/2) and cellular expressions of voltage gated sodium channel (Nav.1.3, Nav.1.8 and Nav.1.9 in NF200+ cells) as well as the pain facilitated cellular expressions (p-P38+/peripherin+ cells, p-JNK+/peripherin+ cells, p-ERK/NF200+ cells) exhibited an identical pattern of inflammation, whereas the neurological integrity displayed an opposite pattern of inflammation among the groups (all p<0.0001). Conclusion: Combined HBO-ADMSCs therapy offered additional benefits for protecting the neurological architectural and functional integrity against acute TSCI.


2011 ◽  
Vol 6 (6) ◽  
pp. 707-720 ◽  
Author(s):  
De-Xiang Ban ◽  
Guang-Zhi Ning ◽  
Shi-Qing Feng ◽  
Ying Wang ◽  
Xian-Hu Zhou ◽  
...  

2016 ◽  
Vol 37 (3) ◽  
pp. 1355 ◽  
Author(s):  
Marta Rocha Araujo ◽  
Pablo Herthel Carvalho ◽  
Taís Silva de Paula ◽  
Bárbara Silva Okano ◽  
Ricardo Junqueira Del Carlo ◽  
...  

Traumatic spinal cord injury results in severe neurological deficits, mostly irreversible. The cell therapy represents a strategy for treatment particularly with the use of stem cells with satisfactory results in several experimental models. The aim of the study was to compare the treatment of spinal cord injury (SCI) with and without mesenchymal stem cells (MSC), to investigate whether MSCs migrate and/or remain at the site of injury, and to analyze the effects of MSCs on inflammation, astrocytic reactivity and activation of endogenous stem cells. Three hours after SCI, animals received bone marrow-derived MSCs (1×107 in 1mL PBS, IV). Animals were euthanized 24 hours, 7 and 21 days post-injury. The MSC were not present in the site of the lesion and the immunofluorescent evaluation showed significant attenuation of inflammatory response with reduction in macrophages labeled with anti-CD68 antibody (ED1), decreased immunoreactivity of astrocytes (GFAP+) and greater activation of endogenous stem cells (nestin+) in the treated groups. Therefore, cell transplantation have a positive effect on recovery from traumatic spinal cord injury possibly due to the potential of MSCs to attenuate the immune response.


Sign in / Sign up

Export Citation Format

Share Document