MS2Compound: A User-Friendly Compound Identification Tool for LC-MS/MS-Based Metabolomics Data

2021 ◽  
Vol 25 (6) ◽  
pp. 389-399
Author(s):  
Santosh Kumar Behera ◽  
Sandeep Kasaragod ◽  
Gayathree Karthikkeyan ◽  
Chinmaya Narayana Kotimoole ◽  
Rajesh Raju ◽  
...  
2020 ◽  
Vol 36 (12) ◽  
pp. 3913-3915
Author(s):  
Hemi Luan ◽  
Xingen Jiang ◽  
Fenfen Ji ◽  
Zhangzhang Lan ◽  
Zongwei Cai ◽  
...  

Abstract Motivation Liquid chromatography–mass spectrometry-based non-targeted metabolomics is routinely performed to qualitatively and quantitatively analyze a tremendous amount of metabolite signals in complex biological samples. However, false-positive peaks in the datasets are commonly detected as metabolite signals by using many popular software, resulting in non-reliable measurement. Results To reduce false-positive calling, we developed an interactive web tool, termed CPVA, for visualization and accurate annotation of the detected peaks in non-targeted metabolomics data. We used a chromatogram-centric strategy to unfold the characteristics of chromatographic peaks through visualization of peak morphology metrics, with additional functions to annotate adducts, isotopes and contaminants. CPVA is a free, user-friendly tool to help users to identify peak background noises and contaminants, resulting in decrease of false-positive or redundant peak calling, thereby improving the data quality of non-targeted metabolomics studies. Availability and implementation The CPVA is freely available at http://cpva.eastus.cloudapp.azure.com. Source code and installation instructions are available on GitHub: https://github.com/13479776/cpva. Supplementary information Supplementary data are available at Bioinformatics online.


IAWA Journal ◽  
2011 ◽  
Vol 32 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Carolina Sarmiento ◽  
Pierre Détienne ◽  
Christine Heinz ◽  
Jean-François Molino ◽  
Pierre Grard ◽  
...  

Sustainable management and conservation of tropical trees and forests require accurate identification of tree species. Reliable, user-friendly identification tools based on macroscopic morphological features have already been developed for various tree floras. Wood anatomical features provide also a considerable amount of information that can be used for timber traceability, certification and trade control. Yet, this information is still poorly used, and only a handful of experts are able to use it for plant species identification. Here, we present an interactive, user-friendly tool based on vector graphics, illustrating 99 states of 27 wood characters from 110 Amazonian tree species belonging to 34 families. Pl@ntWood is a graphical identification tool based on the IDAO system, a multimedia approach to plant identification. Wood anatomical characters were selected from the IAWA list of microscopic features for hardwood identification, which will enable us to easily extend this work to a larger number of species. A stand-alone application has been developed and an on-line version will be delivered in the near future. Besides allowing non-specialists to identify plants in a user-friendly interface, this system can be used with different purposes such as teaching, conservation, management, and selftraining in the wood anatomy of tropical species.


Metabolites ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 479
Author(s):  
Gayatri R. Iyer ◽  
Janis Wigginton ◽  
William Duren ◽  
Jennifer L. LaBarre ◽  
Marci Brandenburg ◽  
...  

Modern analytical methods allow for the simultaneous detection of hundreds of metabolites, generating increasingly large and complex data sets. The analysis of metabolomics data is a multi-step process that involves data processing and normalization, followed by statistical analysis. One of the biggest challenges in metabolomics is linking alterations in metabolite levels to specific biological processes that are disrupted, contributing to the development of disease or reflecting the disease state. A common approach to accomplishing this goal involves pathway mapping and enrichment analysis, which assesses the relative importance of predefined metabolic pathways or other biological categories. However, traditional knowledge-based enrichment analysis has limitations when it comes to the analysis of metabolomics and lipidomics data. We present a Java-based, user-friendly bioinformatics tool named Filigree that provides a primarily data-driven alternative to the existing knowledge-based enrichment analysis methods. Filigree is based on our previously published differential network enrichment analysis (DNEA) methodology. To demonstrate the utility of the tool, we applied it to previously published studies analyzing the metabolome in the context of metabolic disorders (type 1 and 2 diabetes) and the maternal and infant lipidome during pregnancy.


2014 ◽  
Vol 7 ◽  
pp. MRI.S13755 ◽  
Author(s):  
Bezabeh Tedros ◽  
Omkar B. Ijare ◽  
Alexander E. Nikulin ◽  
Rajmund L. Somorjai ◽  
Ian C.P. Smith

Metabolomics is a relatively new technique that is gaining importance very rapidly. MRS-based metabolomics, in particular, is becoming a useful tool in the study of body fluids, tissue biopsies and whole organisms. Advances in analytical techniques and data analysis methods have opened a new opportunity for such technology to contribute in the field of diagnostics. In the MRS approach to the diagnosis of disease, it is important that the analysis utilizes all the essential information in the spectra, is robust, and is non-subjective. Although some of the data analytic methods widely used in chemical and biological sciences are sketched, a more extensive discussion is given of a 5-stage Statistical Classification Strategy. This proposes powerful feature selection methods, based on, for example, genetic algorithms and novel projection techniques. The applications of MRS-based metabolomics in breast cancer, prostate cancer, colorectal cancer, pancreatic cancer, hepatobiliary cancers, gastric cancer, and brain cancer have been reviewed. While the majority of these applications relate to body fluids and tissue biopsies, some in vivo applications have also been included. It should be emphasized that the number of subjects studied must be sufficiently large to ensure a robust diagnostic classification. Before MRS-based metabolomics can become a widely used clinical tool, however, certain challenges need to be overcome. These include manufacturing user-friendly commercial instruments with all the essential features, and educating physicians and medical technologists in the acquisition, analysis, and interpretation of metabolomics data.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009105
Author(s):  
Cecilia Wieder ◽  
Clément Frainay ◽  
Nathalie Poupin ◽  
Pablo Rodríguez-Mier ◽  
Florence Vinson ◽  
...  

Over-representation analysis (ORA) is one of the commonest pathway analysis approaches used for the functional interpretation of metabolomics datasets. Despite the widespread use of ORA in metabolomics, the community lacks guidelines detailing its best-practice use. Many factors have a pronounced impact on the results, but to date their effects have received little systematic attention. Using five publicly available datasets, we demonstrated that changes in parameters such as the background set, differential metabolite selection methods, and pathway database used can result in profoundly different ORA results. The use of a non-assay-specific background set, for example, resulted in large numbers of false-positive pathways. Pathway database choice, evaluated using three of the most popular metabolic pathway databases (KEGG, Reactome, and BioCyc), led to vastly different results in both the number and function of significantly enriched pathways. Factors that are specific to metabolomics data, such as the reliability of compound identification and the chemical bias of different analytical platforms also impacted ORA results. Simulated metabolite misidentification rates as low as 4% resulted in both gain of false-positive pathways and loss of truly significant pathways across all datasets. Our results have several practical implications for ORA users, as well as those using alternative pathway analysis methods. We offer a set of recommendations for the use of ORA in metabolomics, alongside a set of minimal reporting guidelines, as a first step towards the standardisation of pathway analysis in metabolomics.


2021 ◽  
Author(s):  
Cecilia Wieder ◽  
Clément Frainay ◽  
Nathalie Poupin ◽  
Pablo Rodríguez-Mier ◽  
Florence Vinson ◽  
...  

Over-representation analysis (ORA) is one of the commonest pathway analysis approaches used for the functional interpretation of metabolomics datasets. Despite the widespread use of ORA in metabolomics, the community lacks guidelines detailing its best-practice use. Many factors have a pronounced impact on the results, but to date their effects have received little systematic attention in the field. We developed  in-silico  simulations using five publicly available datasets and illustrated that changes in parameters, such as the background set, differential metabolite selection methods, and pathway database choice, could all lead to profoundly different ORA results. The use of a non-assay-specific background set, for example, resulted in large numbers of false-positive pathways. Pathway database choice, evaluated using three of the most popular metabolic pathway databases: KEGG, Reactome, and BioCyc, led to vastly different results in both the number and function of significantly enriched pathways. Metabolomics data specific factors, such as reliability of compound identification and assay chemical bias also impacted ORA results. Simulated metabolite misidentification rates as low as 4% resulted in both gain of false-positive pathways and loss of truly significant pathways across all datasets. Our results have several practical implications for ORA users, as well as those using alternative pathway analysis methods. We offer a set of recommendations for the use of ORA in metabolomics, alongside a set of minimal reporting guidelines, as a first step towards the standardisation of pathway analysis in metabolomics.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joe Wandy ◽  
Rónán Daly

Abstract Background An increasing number of studies now produce multiple omics measurements that require using sophisticated computational methods for analysis. While each omics data can be examined separately, jointly integrating multiple omics data allows for deeper understanding and insights to be gained from the study. In particular, data integration can be performed horizontally, where biological entities from multiple omics measurements are mapped to common reactions and pathways. However, data integration remains a challenge due to the complexity of the data and the difficulty in interpreting analysis results. Results Here we present GraphOmics, a user-friendly platform to explore and integrate multiple omics datasets and support hypothesis generation. Users can upload transcriptomics, proteomics and metabolomics data to GraphOmics. Relevant entities are connected based on their biochemical relationships, and mapped to reactions and pathways from Reactome. From the Data Browser in GraphOmics, mapped entities and pathways can be ranked, sorted and filtered according to their statistical significance (p values) and fold changes. Context-sensitive panels provide information on the currently selected entities, while interactive heatmaps and clustering functionalities are also available. As a case study, we demonstrated how GraphOmics was used to interactively explore multi-omics data and support hypothesis generation using two complex datasets from existing Zebrafish regeneration and Covid-19 human studies. Conclusions GraphOmics is fully open-sourced and freely accessible from https://graphomics.glasgowcompbio.org/. It can be used to integrate multiple omics data horizontally by mapping entities across omics to reactions and pathways. Our demonstration showed that by using interactive explorations from GraphOmics, interesting insights and biological hypotheses could be rapidly revealed.


2020 ◽  
Author(s):  
Lauren M. McIntyre ◽  
Francisco Huertas ◽  
Olexander Moskalenko ◽  
Marta Llansola ◽  
Vicente Felipo ◽  
...  

AbstractGalaxy is a user-friendly platform with a strong development community and a rich set of tools for omics data analysis. While multi-omics experiments are becoming popular, tools for multi-omics data analysis are poorly represented in this platform. Here we present GAIT-GM, a set of new Galaxy tools for integrative analysis of gene expression and metabolomics data. In the Annotation Tool, features are mapped to KEGG pathway using a text mining approach to increase the number of mapped metabolites. Several interconnected databases are used to maximally map gene IDs across species. In the Integration Tool, changes in metabolite levels are modelled as a function of gene expression in a flexible manner. Both unbiased exploration of relationships between genes and metabolites and biologically informed models based on pathway data are enabled. The GAIT-GM tools are freely available at https://github.com/SECIMTools/gait-gm.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Daniel Männle ◽  
Shaun M. K. McKinnie ◽  
Shrikant S. Mantri ◽  
Katharina Steinke ◽  
Zeyin Lu ◽  
...  

ABSTRACT Using automated genome analysis tools, it is often unclear to what degree genetic variability in homologous biosynthetic pathways relates to structural variation. This hampers strain prioritization and compound identification and can lead to overinterpretation of chemical diversity. Here, we assessed the metabolic potential of Nocardia, an underinvestigated actinobacterial genus that is known to comprise opportunistic human pathogens. Our analysis revealed a plethora of putative biosynthetic gene clusters of various classes, including polyketide, nonribosomal peptide, and terpenoid pathways. Furthermore, we used the highly conserved biosynthetic pathway for nocobactin-like siderophores to investigate how gene cluster differences correlate to structural differences in the produced compounds. Sequence similarity networks generated by BiG-SCAPE (Biosynthetic Gene Similarity Clustering and Prospecting Engine) showed the presence of several distinct gene cluster families. Metabolic profiling of selected Nocardia strains using liquid chromatography-mass spectrometry (LC-MS) metabolomics data, nuclear magnetic resonance (NMR) spectroscopy, and GNPS (Global Natural Product Social molecular networking) revealed that nocobactin-like biosynthetic gene cluster (BGC) families above a BiG-SCAPE threshold of 70% can be assigned to distinct structural types of nocobactin-like siderophores. IMPORTANCE Our work emphasizes that Nocardia represent a prolific source for natural products rivaling better-characterized genera such as Streptomyces or Amycolatopsis. Furthermore, we showed that large-scale analysis of biosynthetic gene clusters using similarity networks with high stringency allows the distinction and prediction of natural product structural variations. This will facilitate future genomics-driven drug discovery campaigns.


Sign in / Sign up

Export Citation Format

Share Document