scholarly journals Coculture of Stem Cells from Apical Papilla and Human Umbilical Vein Endothelial Cell Under Hypoxia Increases the Formation of Three-Dimensional Vessel-Like Structures in Vitro

2015 ◽  
Vol 21 (5-6) ◽  
pp. 1163-1172 ◽  
Author(s):  
Changyong Yuan ◽  
Penglai Wang ◽  
Lifang Zhu ◽  
Waruna Lakmal Dissanayaka ◽  
David William Green ◽  
...  
2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Spencer Brown ◽  
Francis Caputo ◽  
Marc Fromer ◽  
Ping Zhang ◽  
Shauhoa Chang ◽  
...  

Background: Diabetes type 1 and 2 cause hyperglycemia and result in endothelial dysfunction with endothelial vessel and poor wound healing. Adipose-derived stem cells (ASCs), progenitor cells in wound healing, show decreased function under hyperglycemic conditions in vitro and in vivo . We hypothesized that exposing ASCs in the presence of high glucose with the human umbilical vein endothelial cell (HUVEC) secretome will reverse the deleterious effects of glucose on ASCs and subsequently enhance angiogenesis and wound healing. Methods: Human umbilical vein endothelial cells (HUVEC) were treated with glucose (30mM) and the conditioned media (CM) were collected every 3 days. ASCs were then co-cultured with EC/CM for 2 weeks. To produce thermal denaturation of protein, EC/CM was heated at 95 0 C for 30 mins. Cell activity, proliferation, and endothelial-like properties of ASCs were determined by MTT assays, growth curves, and real-time RT-PCR, respectively. EC/CM treated ASC were injected into a normal or diabetic murine left thigh muscle at three different points with hindlimb ischemia. After 4 weeks injection, animals were sacrificed. H & E and double immunostaining for CD31 and anti-human nuclei were used to determine if the ASCs primed with EC/CM underwent neovascularization. Results: In fact, ASCs increased in proliferation when co-cultured with HUVEC/CM (1.4 fold) when compared with controls. This promoting effect was lost in heated HUVEC/CM, indicating that the active molecules are of protein origin. After 10 days stimulated with EC/CM an increase in mRNA expression levels of EC markers were also observed in high glucose (30mM) EC/CM environment including CD31 (2-fold), vWF (1.1-fold), and eNOS (3.2-fold) when compared to ASCs cultured in M199. H & E and immunohistochemical staining results showed elevated vessel density and CD31 + cell levels in HUVEC-primed ASC injection sites of diabetic mice when compared with the control animals. Conclusions: HUVEC secrete protein factors that increase proliferation and endothelial differentiation of ASCs under diabetic conditions. Injection of ischemic hindlimbs in diabetic mice with HUVEC-primed ASCs leads to improved angiogenesis.


2017 ◽  
Vol 33 (9) ◽  
pp. 592-599 ◽  
Author(s):  
Francesca Felice ◽  
Ester Belardinelli ◽  
Alessandro Frullini ◽  
Tatiana Santoni ◽  
Egidio Imbalzano ◽  
...  

Objectives Aminaphtone, a naphtohydrochinone used in the treatment of capillary disorders, may affect oedema in chronic venous insufficiency. Aim of study is to investigate the effect of aminaphtone on vascular endothelial permeability in vitro and its effects on three-dimensional capillary-like structures formed by human umbilical vein endothelial cells. Method Human umbilical vein endothelial cells were treated with 50 ng/ml VEGF for 2 h and aminaphtone for 6 h. Permeability assay, VE-cadherin expression and Matrigel assay were performed. Results VEGF-induced permeability was significantly decreased by aminaphtone in a range concentration of 1–20 µg/ml. Aminaphtone restored VE-cadherin expression. Finally, 6 h pre-treatment with aminaphtone significantly preserved capillary-like structures formed by human umbilical vein endothelial cells on Matrigel up to 48 h compared to untreated cells. Conclusions Aminaphtone significantly protects endothelium permeability and stabilises endothelial cells organised in capillary-like structures, modulating VE-cadherin expression. These data might explain the clinical benefit of aminaphtone on chronic venous insufficiency.


2002 ◽  
Vol 11 (4) ◽  
pp. 369-377 ◽  
Author(s):  
Makarand V. Risbud ◽  
Erdal Karamuk ◽  
René Moser ◽  
Joerg Mayer

Three-dimensional (3-D) scaffolds offer an exciting possibility to develop cocultures of various cell types. Here we report chitosan–collagen hydrogel-coated fabric scaffolds with defined mesh size and fiber diameter for 3-D culture of human umbilical vein endothelial cells (HUVECs). These scaffolds did not require pre-coating with fibronectin and they supported proper HUVEC attachment and growth. Scaffolds preserved endothelial cell-specific cobblestone morphology and cells were growing in compartments defined by the textile mesh. HUVECs on the scaffold maintained the property of contact inhibition and did not exhibit overgrowth until the end of in vitro culture (day 6). MTT assay showed that cells had preserved mitochondrial functionality. It was also noted that cell number on the chitosan-coated scaffold was lower than that of collagen-coated scaffolds. Calcein AM and ethidium homodimer (EtD-1) dual staining demonstrated presence of viable and metabolically active cells, indicating growth supportive properties of the scaffolds. Actin labeling revealed absence of actin stress fibers and uniform distribution of F-actin in the cells, indicating their proper attachment to the scaffold matrix. Confocal microscopic studies showed that HUVECs growing on the scaffold had preserved functionality as seen by expression of von Willebrand (vW) factor. Observations also revealed that functional HUVECs were growing at various depths in the hydrogel matrix, thus demonstrating the potential of these scaffolds to support 3-D growth of cells. We foresee the application of this scaffold system in the design of liver bioreactors wherein hepatocytes could be cocultured in parallel with endothelial cells to enhance and preserve liver-specific functions.


2006 ◽  
Vol 340 (2) ◽  
pp. 639-647 ◽  
Author(s):  
Mehdi Kadivar ◽  
Shohreh Khatami ◽  
Yousef Mortazavi ◽  
Mohammad Ali Shokrgozar ◽  
Mohammad Taghikhani ◽  
...  

2007 ◽  
Vol 342-343 ◽  
pp. 305-308 ◽  
Author(s):  
Sh.N. Ge ◽  
Jun Ying Chen ◽  
Yong Xiang Leng ◽  
Nan Huang

In prior work we have shown that titanium oxide (Ti-O) thin films have good blood compatibility. However, as well as being hemocompatible, biomaterials used in contact with blood should be cell compatible also. In the work described here, Ti-O films were synthesized using unbalanced magnetron sputtering (UBMS) and were modified by immobilizing laminin on the film surface for improving human umbilical vein endothelial cell (HUVEC) adhesion and growth. Scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR) and contact-angle measurements were used to investigate the surface characteristics of the Ti-O films and the modified Ti-O films. The results suggest that Laminin can be biochemically immobilized on the Ti-O film surface. The modified layer of Laminin can improve the hydrophilicity and wettability of Ti-O films. In vitro HUVEC investigations reveal that Laminin immobilized on the film surface greatly enhances cell adhesion and growth on Ti-O films.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4218-4218
Author(s):  
Nicholas J. Greco ◽  
Brandon Eilertson ◽  
Jason J. Banks ◽  
Paul Scheid ◽  
Marcie Finney ◽  
...  

Abstract To assess in vitro angiogenesis, cellular co-culture assays have been utilized to study adherence, spreading, differentiation and proliferation, and migration of endothelial cells. Formation of tubule or capillary-like networks is influenced by the presence of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) but other factors provided by cell sources and/or direct contact with multiple cell types may facilitate this formation. The hypothesis of this study is that umbilical cord blood (UCB)-derived endothelial precursor cells (EPCs) may influence the formation of human umbilical vein endothelial cell (HUVEC) tubule structures during angiogenesis. Methods: UCB-derived EPCs were isolated from CD133negative cells after a 7-day culture on human fibronectin in EGM-2 media. Tubule formation was evaluated (passage 1–2, 20 x 103 or 2 x 103 cells) by adding HUVECs without or with EPCs to cultures of human bone marrow-derived mesenchymal stromal cells (MSCs) under normoxic (20%) conditions (37°C, 5% CO2, containing VEGF, epidermal growth factor, FGF, insulin-like growth factor, heparin, hydrocortisone, and ascorbic acid in EGM-2 medium) for a 2-week period. HUVECs were added to cultures without or with labeling with Vybrant® CM-DiI which allows the temporal observation of tubule formation progress and cellular incorporation. Final tubule formation was confirmed using a primary anti-CD31 (PECAM) antibody followed by a FITC-conjugated secondary antibody for signal amplification. Results: After 2–4 days, linear aggregates of labeled HUVECs (2-D arrangement) were observed. After 14 days, there was remodeling of HUVECs into the development of a 3D network of linear and branched tubule structures. EPCs facilitated the formation of tubules affecting both the extent of tubule formation and also enhanced proliferation of HUVEC cells. A minority (< 5%) of EPCs were incorporated into developing tubules (estimated using CM-Dil-labeled EPCs). To quantify tubule formation, digital pictures of representative areas of culture wells (2–4/well) were acquired. Using Image Pro Plus software, tubules were quantified using multi-parameter analysis with respect to length, area, and perimeter. The presence of EPCs (equal to the number of added HUVECs) significantly enhanced all parameters. In comparison to control samples, the presence of EPCs increased the area, perimeter and size by 15.2-fold, 3.4-fold, and 3.2-fold, respectively. Confocal microscopy revealed that the co-cultures formed anatamoses, indicating the formation of a connected network. Conclusions: Taken together, these results suggest that the presence of cord blood-derived EPCs facilitate tubule formation and development via a heterotypic cell-cell interaction without integrating into the angiogenic structures. Further studies will evaluate the secretion of cytokines and growth factors.


Sign in / Sign up

Export Citation Format

Share Document