scholarly journals Endochondral Ossification for Enhancing Bone Regeneration: Converging Native Extracellular Matrix Biomaterials and Developmental Engineering In Vivo

2015 ◽  
Vol 21 (3) ◽  
pp. 247-266 ◽  
Author(s):  
S. Connor Dennis ◽  
Cory J. Berkland ◽  
Lynda F. Bonewald ◽  
Michael S. Detamore
2021 ◽  
Vol 12 ◽  
pp. 204173142110042
Author(s):  
Rao Fu ◽  
Chuanqi Liu ◽  
Yuxin Yan ◽  
Qingfeng Li ◽  
Ru-Lin Huang

Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the challenges and future directions of translating current knowledge from the bench to the bedside.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1408
Author(s):  
Susumu Horikoshi ◽  
Mikihito Kajiya ◽  
Souta Motoike ◽  
Mai Yoshino ◽  
Shin Morimoto ◽  
...  

Three-dimensional clumps of mesenchymal stem cells (MSCs)/extracellular matrix (ECM) complexes (C-MSCs) can be transplanted into tissue defect site with no artificial scaffold. Importantly, most bone formation in the developing process or fracture healing proceeds via endochondral ossification. Accordingly, this present study investigated whether C-MSCs generated with chondro-inductive medium (CIM) can induce successful bone regeneration and assessed its healing process. Human bone marrow-derived MSCs were cultured with xeno-free/serum-free (XF) growth medium. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and then torn off. The sheet was rolled to make a round clump of cells. The cell clumps, i.e., C-MSCs, were maintained in XF-CIM. C-MSCs generated with XF-CIM showed enlarged round cells, cartilage matrix, and hypertrophic chondrocytes genes elevation in vitro. Transplantation of C-MSCs generated with XF-CIM induced successful bone regeneration in the SCID mouse calvaria defect model. Immunofluorescence staining for human-specific vimentin demonstrated that donor human and host mouse cells cooperatively contributed the bone formation. Besides, the replacement of the cartilage matrix into bone was observed in the early period. These findings suggested that cartilaginous C-MSCs generated with XF-CIM can induce bone regeneration via endochondral ossification.


2015 ◽  
Vol 21 (21-22) ◽  
pp. 2649-2661 ◽  
Author(s):  
Reiza Dolendo Ventura ◽  
Andrew Reyes Padalhin ◽  
Young-Ki Min ◽  
Byong-Taek Lee

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jozafina Haj ◽  
Tharwat Haj Khalil ◽  
Mizied Falah ◽  
Eyal Zussman ◽  
Samer Srouji

While biologically feasible, bone repair is often inadequate, particularly in cases of large defects. The search for effective bone regeneration strategies has led to the emergence of bone tissue engineering (TE) techniques. When integrating electrospinning techniques, scaffolds featuring randomly oriented or aligned fibers, characteristic of the extracellular matrix (ECM), can be fabricated. In parallel, mesenchymal stem cells (MSCs), which are capable of both self-renewing and differentiating into numerous tissue types, have been suggested to be a suitable option for cell-based tissue engineering therapies. This work aimed to create a novel biocompatible hybrid scaffold composed of electrospun polymeric nanofibers combined with osteoconductive ceramics, loaded with human MSCs, to yield a tissue-like construct to promote in vivo bone formation. Characterization of the cell-embedded scaffolds demonstrated their resemblance to bone tissue extracellular matrix, on both micro- and nanoscales and MSC viability and integration within the electrospun nanofibers. Subcutaneous implantation of the cell-embedded scaffolds in the dorsal side of mice led to new bone, muscle, adipose, and connective tissue formation within 8 weeks. This hybrid scaffold may represent a step forward in the pursuit of advanced bone tissue engineering scaffolds.


2021 ◽  
Vol 22 (8) ◽  
pp. 4055
Author(s):  
Vivek Jeyakumar ◽  
Nedaa Amraish ◽  
Eugenia Niculescu-Morsza ◽  
Christoph Bauer ◽  
Dieter Pahr ◽  
...  

Tissue engineering strategies promote bone regeneration for large bone defects by stimulating the osteogenesis route via intramembranous ossification in engineered grafts, which upon implantation are frequently constrained by insufficient integration and functional anastomosis of vasculature from the host tissue. In this study, we developed a hybrid biomaterial incorporating decellularized cartilage extracellular matrix (CD-ECM) as a template and silk fibroin (SF) as a carrier to assess the bone regeneration capacity of bone marrow-derived mesenchymal stem cells (hBMSC’s) via the endochondral ossification (ECO) route. hBMSC’s were primed two weeks for chondrogenesis, followed by six weeks for hypertrophy onto hybrid CD-ECM/SF or SF alone scaffolds and evaluated for the mineralized matrix formation in vitro. Calcium deposition biochemically determined increased significantly from 4-8 weeks in both SF and CD-ECM/SF constructs, and retention of sGAG’s were observed only in CD-ECM/SF constructs. SEM/EDX revealed calcium and phosphate crystal localization by hBMSC’s under all conditions. Compressive modulus reached a maximum of 40 KPa after eight weeks of hypertrophic induction. μCT scanning at eight weeks indicated a cloud of denser minerals in groups after hypertrophic induction in CD-ECM/SF constructs than SF constructs. Gene expression by RT-qPCR revealed that hBMSC’s expressed hypertrophic markers VEGF, COL10, RUNX2, but the absence of early hypertrophic marker ChM1 and later hypertrophic marker TSBS1 and the presence of osteogenic markers ALPL, IBSP, OSX under all conditions. Our data indicate a new method to prime hBMSC’S into the late hypertrophic stage in vitro in mechanically stable constructs for ECO-mediated bone tissue regeneration.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Shuo Sun ◽  
Zixue Jiao ◽  
Yu Wang ◽  
Zhenxu Wu ◽  
Haowei Wang ◽  
...  

Abstract Porous microcarriers have aroused increasing attention recently by facilitating oxygen and nutrient transfer, supporting cell attachment and growth with sufficient cell seeding density. In this study, porous polyetheretherketone (PEEK) microcarriers coated with mineralized extracellular matrix (mECM), known for their chemical, mechanical and biological superiority, were developed for orthopedic applications. Porous PEEK microcarriers were derived from smooth microcarriers using a simple wet-chemistry strategy involving the reduction of carbonyl groups. This treatment simultaneously modified surface topology and chemical composition. Furthermore, the microstructure, protein absorption, cytotoxicity and bioactivity of the obtained porous microcarriers were investigated. The deposition of mECM through repeated recellularization and decellularization on the surface of porous MCs further promoted cell proliferation and osteogenic activity. Additionally, the mECM coated porous microcarriers exhibited excellent bone regeneration in a rat calvarial defect repair model in vivo, suggesting huge potential applications in bone tissue engineering.


2019 ◽  
Author(s):  
Samuel Herberg ◽  
Daniel Varghai ◽  
Daniel S. Alt ◽  
Phuong N. Dang ◽  
Honghyun Park ◽  
...  

AbstractScaffold-based bone tissue engineering approaches frequently induce repair processes dissimilar to normal developmental programs. In contrast, biomimetic strategies aim to recapitulate aspects of development through cellular self-organization, morphogenetic pathway activation, and mechanical cues. This may improve regenerative outcome in large long bone defects that cannot heal on their own; however, no study to date has investigated the role of scaffold-free construct geometry, in this case tubes mimicking long bone diaphyses, on bone regeneration. We hypothesized that microparticle-mediated in situ presentation of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) to engineered human mesenchymal stem cell (hMSC) tubes induces the endochondral cascade, and that TGF-β1 + BMP-2-presenting hMSC tubes facilitate enhanced endochondral healing of critical-sized femoral segmental defects under delayed in vivo mechanical loading conditions compared to loosely-packed hMSC sheets. Here, localized morphogen presentation imparted early chondrogenic lineage priming, and stimulated robust endochondral differentiation of hMSC tubes in vitro. In an ectopic environment, hMSC tubes formed a cartilage template that was actively remodeled into trabecular bone through endochondral ossification without lengthy predifferentiation. Similarly, hMSC tubes stimulated in vivo cartilage and bone formation and more robust healing in femoral defects compared to hMSC sheets. New bone was formed through endochondral ossification in both groups; however, only hMSC tubes induced regenerate tissue partially resembling normal growth plate architecture. Together, this study demonstrates the interaction between mesenchymal cell condensation geometry, bioavailability of multiple morphogens, and defined in vivo mechanical environment to recapitulate developmental programs for biomimetic bone tissue engineering.Significance StatementEngineered bone constructs must be capable of withstanding and adapting to harsh conditions in a defect site upon implantation, and can be designed to facilitate repair processes that resemble normal developmental programs. Self-assembled tubular human mesenchymal stem cell constructs were engineered to resemble the geometry of long bone diaphyses. By mimicking the cellular, biochemical, and mechanical environment of the endochondral ossification process during embryonic development, successful healing of large femoral segmental defects upon implantation was achieved and the extent was construct geometry dependent. Importantly, results were obtained without a supporting scaffold or lengthy predifferentiation of the tubular constructs. This indicates that adult stem/progenitor cells retain features of embryonic mesenchyme, and supports the concept of developmental engineering for bone regeneration approaches.


Sign in / Sign up

Export Citation Format

Share Document