Counting jump optimal linear extensions of some posets

Author(s):  
Hyung Chan Jung
Author(s):  
Estevão Fuzaro de Almeida ◽  
Fabio Roberto Chavarette ◽  
Douglas da Costa Ferreira

2013 ◽  
Vol 32 (9) ◽  
pp. 2412-2417
Author(s):  
Yue-hong LI ◽  
Pin WAN ◽  
Yong-hua WANG ◽  
Jian YANG ◽  
Qin DENG

Author(s):  
Haiyan Ye ◽  
Jiabao Jiang

AbstractThe lack of spectrum resources restricts the development of wireless communication applications. In order to solve the problems of low spectrum utilization and channel congestion caused by the static division of spectrum resource, this paper proposes an optimal linear weighted cooperative spectrum sensing for clustered-based cognitive radio networks. In this scheme, different weight values will be assigned for cooperative nodes according to the SNR of cognitive users and the historical sensing accuracy. In addition, the cognitive users can be clustered, and the users with the better channel characteristics will be selected as cluster heads for gathering the local sensing information. Simulation results show that the proposed scheme can obtain better sensing performance, improve the detection probability and reduce the error probability.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 143
Author(s):  
Jose Beltrán Jiménez ◽  
Tomi S. Koivisto

In this paper, we provide a general framework for the construction of the Einstein frame within non-linear extensions of the teleparallel equivalents of General Relativity. These include the metric teleparallel and the symmetric teleparallel, but also the general teleparallel theories. We write the actions in a form where we separate the Einstein–Hilbert term, the conformal mode due to the non-linear nature of the theories (which is analogous to the extra degree of freedom in f(R) theories), and the sector that manifestly shows the dynamics arising from the breaking of local symmetries. This frame is then used to study the theories around the Minkowski background, and we show how all the non-linear extensions share the same quadratic action around Minkowski. As a matter of fact, we find that the gauge symmetries that are lost by going to the non-linear generalisations of the teleparallel General Relativity equivalents arise as accidental symmetries in the linear theory around Minkowski. Remarkably, we also find that the conformal mode can be absorbed into a Weyl rescaling of the metric at this order and, consequently, it disappears from the linear spectrum so only the usual massless spin 2 perturbation propagates. These findings unify in a common framework the known fact that no additional modes propagate on Minkowski backgrounds, and we can trace it back to the existence of accidental gauge symmetries of such a background.


Sign in / Sign up

Export Citation Format

Share Document