Relationships between the pressure and the free surface independent of the wave-speed

Author(s):  
Katie Oliveras ◽  
Vishal Vasan
Keyword(s):  
2009 ◽  
Vol 66 (6) ◽  
pp. 1845-1855 ◽  
Author(s):  
John McHugh

Abstract Internal waves in a two-layer fluid are considered. The layers have different values of the buoyancy frequency, assumed to be constant in each layer. The density profile is chosen to be continuous across the interface and the flow is Boussinesq. The solution is an expansion in the wave amplitude, similar to a Stokes expansion for free surface waves. The results show that the nonlinear terms in the interfacial boundary conditions require higher harmonics and result in nonlinear wave steepening at the interface. The first few harmonics are scattered by the interface, whereas the higher harmonics are evanescent in the vertical. The second-order correction to the wave speed is negative, similar to previous results with a rigid upper boundary.


Author(s):  
Beñat Gurrutxaga-Lerma ◽  
Daniel S. Balint ◽  
Daniele Dini ◽  
Adrian P. Sutton

The elastodynamic image forces on edge and screw dislocations in the presence of a planar-free surface are derived. The explicit form of the elastodynamic fields of an injected, quiescent screw dislocation are also derived. The resulting image forces are affected by retardation effects: the dislocations experience no image force for a period of time defined by the arrival and reflection at the free surface of the dislocation fields. For the case of injected, stationary dislocations, it is shown that the elastodynamic image force tends asymptotically to the elastotatic prediction. For the case of injected, moving dislocations, it is shown that the elastodynamic image force on both the edge and the screw dislocations is magnified by inertial effects, and becomes increasingly divergent with time; this additional effect, missing in the elastostatic description, is shown to be substantial even for slow moving dislocations. Finally, it is shown that the elastodynamic image force of an edge dislocation moving towards the surface at the Rayleigh wave speed becomes repulsive, rather than attractive; this is suggestive of instabilities at the core of the dislocation, and likely resonances with the free surface.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 699
Author(s):  
Jianxu Zhou ◽  
Yongfa Li

For a water diversion hydropower system with a flat ceiling tail tunnel with high elevation, during transient states with relatively low tail water levels, free-surface-pressurized flow inevitably appears and its transient characteristics have obvious effects on the system’s operating stability. Using Newton–Raphson linearization in the characteristic implicit format for modeling of the free-surface-pressurized flow in the tail tunnel, the mathematical models for necessary boundary conditions were derived and linear algebraic equations with a band coefficient matrix were grouped for further transient simulation. Then, a unified mathematical model was established for hydraulic transient analysis of the hydropower system with free-surface-pressurized flow. Combined with experimental research and numerical simulation, the wave speed for the free-surface-pressurized flow was experimentally analyzed for further correctness in the unified model, and by comparative analysis the hydraulic characteristics of the free-surface-pressurized flow in the flat ceiling tail tunnel were investigated. It was found that the derived mathematical model can basically represent water behaviors in the water-surface-pressurized flow, the wave speed for the mixed water-surface-pressurized flow can be set to approximately 50m/s, and with this correctness the numerical results are in good agreement with the experimental results. Therefore, the obtained mathematical model combined with an experimental wave speed or a reference wave speed of 50 m/s for the free-surface-pressurized flow is preferable during the design stage of the hydropower system.


2015 ◽  
Vol 768 ◽  
pp. 91-112 ◽  
Author(s):  
Miles H. Wheeler

We consider two-dimensional solitary water waves on a shear flow with an arbitrary distribution of vorticity. Assuming that the horizontal velocity in the fluid never exceeds the wave speed and that the free surface lies everywhere above its asymptotic level, we give a very simple proof that a suitably defined Froude number $F$ must be strictly greater than the critical value $F=1$. We also prove a related upper bound on $F$, and hence on the amplitude, under more restrictive assumptions on the vorticity.


Author(s):  
Calin Iulian Martin

We are concerned here with geophysical water waves arising as the free surface of water flows governed by the f -plane approximation. Allowing for an arbitrary bounded discontinuous vorticity, we prove the existence of steady periodic two-dimensional waves of small amplitude. We illustrate the local bifurcation result by means of an analysis of the dispersion relation for a two-layered fluid consisting of a layer of constant non-zero vorticity γ 1 adjacent to the surface situated above another layer of constant non-zero vorticity γ 2 ≠ γ 1 adjacent to the bed. For certain vorticities γ 1 , γ 2 , we also provide estimates for the wave speed c in terms of the speed at the surface of the bifurcation inducing laminar flows. This article is part of the theme issue ‘Nonlinear water waves’.


1978 ◽  
Vol 45 (1) ◽  
pp. 25-31 ◽  
Author(s):  
A. F. M. Akhtaruzzaman ◽  
C. K. Wang ◽  
S. P. Lin

The governing equation of the linear interfacial wave motion in an n-layered liquid film, which possesses n degree of freedoms, flowing steadily down an inclined plane is obtained. The effects of density, viscosity, and thickness variations on the various modes of wave motion are elucidated with aid of some numerical experiments for a three-layered system. It is found that the wave speed of the interfacial mode is much smaller than that of the free-surface mode. The interfaces seem to oscillate in phase for the free-surface mode but can be either out-of-phase or in-phase for the interfacial modes. It is shown that a limited control of wave speeds can be achieved by adjusting the variation in thickness, viscosity, and density of each layer.


Author(s):  
Jin Young Kim ◽  
R. E. Hummel ◽  
R. T. DeHoff

Gold thin film metallizations in microelectronic circuits have a distinct advantage over those consisting of aluminum because they are less susceptible to electromigration. When electromigration is no longer the principal failure mechanism, other failure mechanisms caused by d.c. stressing might become important. In gold thin-film metallizations, grain boundary grooving is the principal failure mechanism.Previous studies have shown that grain boundary grooving in gold films can be prevented by an indium underlay between the substrate and gold. The beneficial effect of the In/Au composite film is mainly due to roughening of the surface of the gold films, redistribution of indium on the gold films and formation of In2O3 on the free surface and along the grain boundaries of the gold films during air annealing.


Sign in / Sign up

Export Citation Format

Share Document