Global attractivity of a nonlocal reaction-diffusion viral infection model

Author(s):  
Yu Yang ◽  
Lan Zou ◽  
Cheng-Hsiung Hsu
Author(s):  
Qing Ge ◽  
Xia Wang ◽  
Libin Rong

In this paper, we propose a reaction–diffusion viral infection model with nonlinear incidences, cell-to-cell transmission, and a time delay. We impose the homogeneous Neumann boundary condition. For the case where the domain is bounded, we first study the well-posedness. Then we analyze the local stability of homogeneous steady states. We establish a threshold dynamics which is completely characterized by the basic reproduction number. For the case where the domain is the whole Euclidean space, we consider the existence of traveling wave solutions by using the cross-iteration method and Schauder’s fixed point theorem. Finally, we study how the speed of spread in space affects the spread of cells and viruses. We obtain the existence of the wave speed, which is dependent on the diffusion coefficient.


2016 ◽  
Vol 4 ◽  
pp. 435-445 ◽  
Author(s):  
Marouane Mahrouf ◽  
El Mehdi Lotfi ◽  
Mehdi Maziane ◽  
Khalid Hattaf ◽  
Noura Yousfi

2021 ◽  
Vol 20 (11) ◽  
pp. 3921
Author(s):  
Wei Yang ◽  
Jinliang Wang

<p style='text-indent:20px;'>In this paper, we are concerned with the threshold dynamics of a diffusive cholera model incorporating latency and bacterial hyperinfectivity. Our model takes the form of spatially nonlocal reaction-diffusion system associated with zero-flux boundary condition and time delay. By studying the associated eigenvalue problem, we establish the threshold dynamics that determines whether or not cholera will spread. We also confirm that the threshold dynamics can be determined by the basic reproduction number. By constructing Lyapunov functional, we address the global attractivity of the unique positive equilibrium whenever it exists. The theoretical results are still hold for the case when the constant parameters are replaced by strictly positive and spatial dependent functions.</p>


2018 ◽  
Vol 11 (05) ◽  
pp. 1850071 ◽  
Author(s):  
Zhiting Xu ◽  
Youqing Xu

This paper is devoted to the study of the stability of a CD[Formula: see text] T cell viral infection model with diffusion. First, we discuss the well-posedness of the model and the existence of endemic equilibrium. Second, by analyzing the roots of the characteristic equation, we establish the local stability of the virus-free equilibrium. Furthermore, by constructing suitable Lyapunov functions, we show that the virus-free equilibrium is globally asymptotically stable if the threshold value [Formula: see text]; the endemic equilibrium is globally asymptotically stable if [Formula: see text] and [Formula: see text]. Finally, we give an application and numerical simulations to illustrate the main results.


Sign in / Sign up

Export Citation Format

Share Document