scholarly journals The exceptional set in Vojta’s conjecture for algebraic points of bounded degree

2012 ◽  
Vol 140 (7) ◽  
pp. 2267-2277
Author(s):  
Aaron Levin
Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Pat Morin ◽  
Bartosz Walczak ◽  
David R. Wood

Abstract A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component has at most c vertices. We prove that planar graphs with maximum degree $\Delta$ are 3-colourable with clustering $O(\Delta^2)$ . The previous best bound was $O(\Delta^{37})$ . This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $\Delta$ that exclude a fixed minor are 3-colourable with clustering $O(\Delta^5)$ . The best previous bound for this result was exponential in $\Delta$ .


2021 ◽  
Author(s):  
Sriram Bhyravarapu ◽  
Subrahmanyam Kalyanasundaram ◽  
Rogers Mathew

2017 ◽  
Vol 27 (13) ◽  
pp. 2461-2484 ◽  
Author(s):  
Manuel Friedrich

We present a Korn-type inequality in a planar setting for special functions of bounded deformation. We prove that for each function in [Formula: see text] with a sufficiently small jump set the distance of the function and its derivative from an infinitesimal rigid motion can be controlled in terms of the linearized elastic strain outside of a small exceptional set of finite perimeter. Particularly, the result shows that each function in [Formula: see text] has bounded variation away from an arbitrarily small part of the domain.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-37
Author(s):  
Ivona Bezáková ◽  
Andreas Galanis ◽  
Leslie Ann Goldberg ◽  
Daniel Štefankovič

We study the problem of approximating the value of the matching polynomial on graphs with edge parameter γ, where γ takes arbitrary values in the complex plane. When γ is a positive real, Jerrum and Sinclair showed that the problem admits an FPRAS on general graphs. For general complex values of γ, Patel and Regts, building on methods developed by Barvinok, showed that the problem admits an FPTAS on graphs of maximum degree Δ as long as γ is not a negative real number less than or equal to −1/(4(Δ −1)). Our first main result completes the picture for the approximability of the matching polynomial on bounded degree graphs. We show that for all Δ ≥ 3 and all real γ less than −1/(4(Δ −1)), the problem of approximating the value of the matching polynomial on graphs of maximum degree Δ with edge parameter γ is #P-hard. We then explore whether the maximum degree parameter can be replaced by the connective constant. Sinclair et al. showed that for positive real γ, it is possible to approximate the value of the matching polynomial using a correlation decay algorithm on graphs with bounded connective constant (and potentially unbounded maximum degree). We first show that this result does not extend in general in the complex plane; in particular, the problem is #P-hard on graphs with bounded connective constant for a dense set of γ values on the negative real axis. Nevertheless, we show that the result does extend for any complex value γ that does not lie on the negative real axis. Our analysis accounts for complex values of γ using geodesic distances in the complex plane in the metric defined by an appropriate density function.


2020 ◽  
Vol 57 (4) ◽  
pp. 892-919
Author(s):  
Omri Ben‐Eliezer ◽  
Lior Gishboliner ◽  
Dan Hefetz ◽  
Michael Krivelevich
Keyword(s):  

1997 ◽  
Vol 08 (03) ◽  
pp. 289-304 ◽  
Author(s):  
Marc Baumslag ◽  
Bojana Obrenić

Index-shuffle graphs are introduced as candidate interconnection networks for parallel computers. The comparative advantages of index-shuffle graphs over the standard bounded-degree "approximations" of the hypercube, namely butterfly-like and shuffle-like graphs, are demonstrated in the theoretical framework of graph embedding and network emulations. An N-node index-shuffle graph emulates: • an N-node shuffle-exchange graph with no slowdown, which the currently best emulations of shuffle-like graphs by hypercubes and butterflies incur a slowdown of Ω( log N). • its like-sized butterfly graph with a slowdown O( log log log N), while the currently best emulations of butterfly-like graphs by shuffle-like graphs incur a slowdown of Ω( log log N). • an N-node hypercube that executes an on-line leveled algorithm with a slowdown O( log log N), while the slowdown of currently best such emulations of the hypercube by its bounded-degree shuffle-like and butterfly-like derivatives remains Ω( log N). Our emulation is based on an embedding of an N-node hypercube into an N-node index-shuffle graph with dilation O( log log N), while the currently best embeddings of the hypercube into its bounded-degree shuffle-like and butterfly-like derivatives incur a dilation of Ω( log N).


2010 ◽  
Vol 88 (2) ◽  
pp. 145-167 ◽  
Author(s):  
I. CHYZHYKOV ◽  
J. HEITTOKANGAS ◽  
J. RÄTTYÄ

AbstractNew estimates are obtained for the maximum modulus of the generalized logarithmic derivatives f(k)/f(j), where f is analytic and of finite order of growth in the unit disc, and k and j are integers satisfying k>j≥0. These estimates are stated in terms of a fixed (Lindelöf) proximate order of f and are valid outside a possible exceptional set of arbitrarily small upper density. The results obtained are then used to study the growth of solutions of linear differential equations in the unit disc. Examples are given to show that all of the results are sharp.


2016 ◽  
Vol 94 (1) ◽  
pp. 15-19 ◽  
Author(s):  
DIEGO MARQUES ◽  
JOSIMAR RAMIREZ

In this paper, we shall prove that any subset of $\overline{\mathbb{Q}}$, which is closed under complex conjugation, is the exceptional set of uncountably many transcendental entire functions with rational coefficients. This solves an old question proposed by Mahler [Lectures on Transcendental Numbers, Lecture Notes in Mathematics, 546 (Springer, Berlin, 1976)].


Sign in / Sign up

Export Citation Format

Share Document