scholarly journals A Genetic Analysis of Interactions with Spc110p Reveals Distinct Functions of Spc97p and Spc98p, Components of the Yeast γ-Tubulin Complex

1998 ◽  
Vol 9 (8) ◽  
pp. 2201-2216 ◽  
Author(s):  
Thu Nguyen ◽  
Dani B.N. Vinh ◽  
Douglas K. Crawford ◽  
Trisha N. Davis

The spindle pole body (SPB) in Saccharomyces cerevisiae functions as the microtubule-organizing center. Spc110p is an essential structural component of the SPB and spans between the central and inner plaques of this multilamellar organelle. The amino terminus of Spc110p faces the inner plaque, the substructure from which spindle microtubules radiate. We have undertaken a synthetic lethal screen to identify mutations that enhance the phenotype of the temperature-sensitive spc110–221 allele, which encodes mutations in the amino terminus. The screen identified mutations inSPC97 and SPC98, two genes encoding components of the Tub4p complex in yeast. The spc98–63allele is synthetic lethal only with spc110 alleles that encode mutations in the N terminus of Spc110p. In contrast, thespc97 alleles are synthetic lethal withspc110 alleles that encode mutations in either the N terminus or the C terminus. Using the two-hybrid assay, we show that the interactions of Spc110p with Spc97p and Spc98p are not equivalent. The N terminus of Spc110p displays a robust interaction with Spc98p in two different two-hybrid assays, while the interaction between Spc97p and Spc110p is not detectable in one strain and gives a weak signal in the other. Extra copies of SPC98 enhance the interaction between Spc97p and Spc110p, while extra copies of SPC97interfere with the interaction between Spc98p and Spc110p. By testing the interactions between mutant proteins, we show that the lethal phenotype in spc98–63 spc110–221 cells is caused by the failure of Spc98–63p to interact with Spc110–221p. In contrast, the lethal phenotype in spc97–62 spc110–221 cells can be attributed to a decreased interaction between Spc97–62p and Spc98p. Together, these studies provide evidence that Spc110p directly links the Tub4p complex to the SPB. Moreover, an interaction between Spc98p and the amino-terminal region of Spc110p is a critical component of the linkage, whereas the interaction between Spc97p and Spc110p is dependent on Spc98p.

Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 407-422 ◽  
Author(s):  
E A Vallen ◽  
W Ho ◽  
M Winey ◽  
M D Rose

Abstract KAR1 encodes an essential component of the yeast spindle pole body (SPB) that is required for karyogamy and SPB duplication. A temperature-sensitive mutation, kar1-delta 17, mapped to a region required for SPB duplication and for localization to the SPB. To identify interacting SPB proteins, we isolated 13 dominant mutations and 3 high copy number plasmids that suppressed the temperature sensitivity of kar1-delta 17. Eleven extragenic suppressor mutations mapped to two linkage groups, DSK1 and DSK2. The extragenic suppressors were specific for SPB duplication and did not suppress karyogamy-defective alleles. The major class, DSK1, consisted of mutations in CDC31. CDC31 is required for SPB duplication and encodes a calmodulin-like protein that is most closely related to caltractin/centrin, a protein associated with the Chlamydomonas basal body. The high copy number suppressor plasmids contained the wild-type CDC31 gene. One CDC31 suppressor allele conferred a temperature-sensitive defect in SPB duplication, which was counter-suppressed by recessive mutations in KAR1. In spite of the evidence for a direct interaction, the strongest CDC31 alleles, as well as both DSK2 alleles, suppressed a complete deletion of KAR1. However, the CDC31 alleles also made the cell supersensitive to KAR1 gene dosage, arguing against a simple bypass mechanism of suppression. We propose a model in which Kar1p helps localize Cdc31p to the SPB and that Cdc31p then initiates SPB duplication via interaction with a downstream effector.


2002 ◽  
Vol 13 (7) ◽  
pp. 2360-2373 ◽  
Author(s):  
Akiko Fujita ◽  
Leah Vardy ◽  
Miguel Angel Garcia ◽  
Takashi Toda

γ-Tubulin functions as a multiprotein complex, called the γ-tubulin complex (γ-TuC), and composes the microtubule organizing center (MTOC). Fission yeast Alp4 and Alp6 are homologues of two conserved γ-TuC proteins, hGCP2 and hGCP3, respectively. We isolated a novel gene, alp16 + , as a multicopy suppressor of temperature-sensitive alp6-719mutants. alp16 + encodes a 759-amino-acid protein with two conserved regions found in all other members of γ-TuC components. In addition, Alp16 contains an additional motif, which shows homology to hGCP6/Xgrip210. Gene disruption shows that alp16 + is not essential for cell viability. However, alp16 deletion displays abnormally long cytoplasmic microtubules, which curve around the cell tip. Furthermore, alp16-deleted mutants are hypersensitive to microtubule-depolymerizing drugs and synthetically lethal with either temperature-sensitive alp4-225,alp4-1891, or alp6-719 mutants. Overproduction of Alp16 is lethal, with defective phenotypes very similar to loss of Alp4 or Alp6. Alp16 localizes to the spindle pole body throughout the cell cycle and to the equatorial MTOC at postanaphase. Alp16 coimmunoprecipitates with γ-tubulin and cosediments with the γ-TuC in a large complex (>20 S). Alp16 is, however, not required for the formation of this large complex. We discuss evolutional conservation and divergence of structure and function of the γ-TuC between yeast and higher eukaryotes.


1997 ◽  
Vol 8 (12) ◽  
pp. 2575-2590 ◽  
Author(s):  
Holly A. Sundberg ◽  
Trisha N. Davis

The central coiled coil of the essential spindle pole component Spc110p spans the distance between the central and inner plaques of theSaccharomyces cerevisiae spindle pole body (SPB). The carboxy terminus of Spc110p, which binds calmodulin, resides at the central plaque, and the amino terminus resides at the inner plaque from which nuclear microtubules originate. To dissect the functions of Spc110p, we created temperature-sensitive mutations in the amino and carboxy termini. Analysis of the temperature-sensitivespc110 mutations and intragenic complementation analysis of the spc110 alleles defined three functional regions of Spc110p. Region I is located at the amino terminus. Region II is located at the carboxy-terminal end of the coiled coil, and region III is the previously defined calmodulin-binding site. Overexpression ofSPC98 suppresses the temperature sensitivity conferred by mutations in region I but not the phenotypes conferred by mutations in the other two regions, suggesting that the amino terminus of Spc110p is involved in an interaction with the γ-tubulin complex composed of Spc97p, Spc98p, and Tub4p. Mutations in region II lead to loss of SPB integrity during mitosis, suggesting that this region is required for the stable attachment of Spc110p to the central plaque. Our results strongly argue that Spc110p links the γ-tubulin complex to the central plaque of the SPB.


2013 ◽  
Vol 24 (18) ◽  
pp. 2894-2906 ◽  
Author(s):  
Hirohisa Masuda ◽  
Risa Mori ◽  
Masashi Yukawa ◽  
Takashi Toda

γ-Tubulin plays a universal role in microtubule nucleation from microtubule organizing centers (MTOCs) such as the animal centrosome and fungal spindle pole body (SPB). γ-Tubulin functions as a multiprotein complex called the γ-tubulin complex (γ-TuC), consisting of GCP1–6 (GCP1 is γ-tubulin). In fungi and flies, it has been shown that GCP1–3 are core components, as they are indispensable for γ-TuC complex assembly and cell division, whereas the other three GCPs are not. Recently a novel conserved component, MOZART1, was identified in humans and plants, but its precise functions remain to be determined. In this paper, we characterize the fission yeast homologue Mzt1, showing that it is essential for cell viability. Mzt1 is present in approximately equal stoichiometry with Alp4/GCP2 and localizes to all the MTOCs, including the SPB and interphase and equatorial MTOCs. Temperature-sensitive mzt1 mutants display varying degrees of compromised microtubule organization, exhibiting multiple defects during both interphase and mitosis. Mzt1 is required for γ-TuC recruitment, but not sufficient to localize to the SPB, which depends on γ-TuC integrity. Intriguingly, the core γ-TuC assembles in the absence of Mzt1. Mzt1 therefore plays a unique role within the γ-TuC components in attachment of this complex to the major MTOC site.


1996 ◽  
Vol 133 (6) ◽  
pp. 1331-1346 ◽  
Author(s):  
S Biggins ◽  
I Ivanovska ◽  
M D Rose

KAR1 is required for duplication of the Saccharomyces cerevisiae microtubule organizing center, the spindle pole body (SPB) (Rose, M.D., and G.R. Fink, 1987. Cell. 48:1047-1060). Suppressors of a kar1 allele defective for SPB duplication were isolated in two genes, CDC31 and DSK2 (Vallen, E.A., W.H., M. Winey, and M.D. Rose. 1994. Genetics. 137:407-422). To elucidate the role of DSK2 in SPB duplication, we cloned the gene and found it encodes a novel ubiquitin-like protein containing an NH2 terminus 36% identical to ubiquitin. The only other known yeast ubiquitin-like protein is encoded by the nucleotide excision repair gene RAD23 (Watkins, J.F.,P. Sung, L. Prakash, and S. Prakash. 1993. Mol. Cell. Bio. 13:7757-7765). Unlike ubiquitin, the NH2-terminal domain of Dsk2p is not cleaved from the protein, indicating that Dsk2p is not conjugated to other proteins. Although the DSK2-1 mutation alters a conserved residue in the Dsk2p ubiquitin-like domain, we detect no differences in Dsk2p or Cdc31p stability. Therefore, DSK2 does not act by interfering with ubiquitin-dependent protein degradation of these proteins. Although DSK2 is not essential, a strain deleted for both DSK2 and RAD23 is temperature sensitive for growth due to a block in SPB duplication. In addition, overexpression of DSK2 is toxic, and the DSK2-1 allele causes a block in SPB duplication. Therefore, DSK2 dosage is critical for SPB duplication. We determined that CDC31 gene function is downstream of DSK2 and KAR1. Dsk2p is a nuclear-enriched protein, and we propose that Dsk2p assists in Cdc31 assembly into the new SPB.


2003 ◽  
Vol 14 (12) ◽  
pp. 4931-4946 ◽  
Author(s):  
Vladimir S. Nekrasov ◽  
Melanie A. Smith ◽  
Sew Peak-Chew ◽  
John V. Kilmartin

We have purified two new complexes from Saccharomyces cerevisiae, one containing the centromere component Mtw1p together with Nnf1p, Nsl1p, and Dsn1p, which we call the Mtw1p complex, and the other containing Spc105p and Ydr532p, which we call the Spc105p complex. Further purifications using Dsn1p tagged with protein A show, in addition to the other components of the Mtw1p complex, the two components of the Spc105p complex and the four components of the previously described Ndc80p complex, suggesting that all three complexes are closely associated. Fluorescence microscopy and immunoelectron microscopy show that Nnf1p, Nsl1p, Dsn1p, Spc105p, and Ydr532p all localize to the nuclear side of the spindle pole body and along short spindles. Chromatin immunoprecipitation assays show that all five proteins are associated with centromere DNA. Homologues of Nsl1p and Spc105p in Schizosaccharomyces pombe also localize to the centromere. Temperature-sensitive mutations of Nsl1p, Dsn1p, and Spc105p all cause defects in chromosome segregation. Synthetic-lethal interactions are found between temperature-sensitive mutations in proteins from all three complexes, in agreement with their close physical association. These results show an increasingly complex structure for the S. cerevisiae centromere and a probable conservation of structure between parts of the centromeres of S. cerevisiae and S. pombe.


2006 ◽  
Vol 17 (4) ◽  
pp. 1959-1970 ◽  
Author(s):  
Yasuhiro Araki ◽  
Corine K. Lau ◽  
Hiromi Maekawa ◽  
Sue L. Jaspersen ◽  
Thomas H. Giddings ◽  
...  

The spindle pole body (SPB) in Saccharomyces cerevisiae functions to nucleate and organize spindle microtubules, and it is embedded in the nuclear envelope throughout the yeast life cycle. However, the mechanism of membrane insertion of the SPB has not been elucidated. Ndc1p is an integral membrane protein that localizes to SPBs, and it is required for insertion of the SPB into the nuclear envelope during SPB duplication. To better understand the function of Ndc1p, we performed a dosage suppressor screen using the ndc1-39 temperature-sensitive allele. We identified an essential SPB component, Nbp1p. NBP1 shows genetic interactions with several SPB genes in addition to NDC1, and two-hybrid analysis revealed that Nbp1p binds to Ndc1p. Furthermore, Nbp1p is in the Mps2p-Bbp1p complex in the SPB. Immunoelectron microscopy confirmed that Nbp1p localizes to the SPB, suggesting a function at this location. Consistent with this hypothesis, nbp1-td (a degron allele) cells fail in SPB duplication upon depletion of Nbp1p. Importantly, these cells exhibit a “dead” SPB phenotype, similar to cells mutant in MPS2, NDC1, or BBP1. These results demonstrate that Nbp1p is a SPB component that acts in SPB duplication at the point of SPB insertion into the nuclear envelope.


1996 ◽  
Vol 109 (9) ◽  
pp. 2229-2237 ◽  
Author(s):  
A. Spang ◽  
K. Grein ◽  
E. Schiebel

Yeast calmodulin (CaM) was found to be localized to the microtubule organizing centre, the spindle pole body. The spindle pole body is a multi-layered structure consisting of outer, central and inner plaques. In this paper, we report that a fraction of CaM is in association with the central plaque of the spindle pole body. This localization is dependent on the calmodulin-binding site of another spindle pole body component, Spc110p, which serves as a spacer connecting the inner plaque with the central plaque. Since the CaM-binding site of Spc110p is located near the carboxy terminus, Spc110p-dependent localization of calmodulin defines the orientation of Spc110p with the carboxy terminus towards the central plaque and the amino terminus towards the inner plaque. This orientation of Spc110p was confirmed using antibodies specific for the amino-terminal end of Spc110p, which predominantly labelled the inner plaque. In addition, synthetic peptides corresponding to the calmodulin-binding site of Spc110p bound to calmodulin with a Kd in the nanomolar range and nearly independent of Ca2+.


2003 ◽  
Vol 162 (7) ◽  
pp. 1211-1221 ◽  
Author(s):  
John V. Kilmartin

Centrins are calmodulin-like proteins present in microtubule-organizing centers. The Saccharomyces cerevisiae centrin, Cdc31p, was functionally tagged with a single Z domain of protein A, and used in pull-down experiments to isolate Cdc31p-binding proteins. One of these, Sfi1p, localizes to the half-bridge of the spindle pole body (SPB), where Cdc31p is also localized. Temperature-sensitive mutants in SFI1 show a defect in SPB duplication and genetic interactions with cdc31-1. Sfi1p contains multiple internal repeats that are also present in a Schizosaccharomyces pombe protein, which also localizes to the SPB, and in several human proteins, one of which localizes close to the centriole region. Cdc31p binds directly to individual Sfi1 repeats in a 1:1 ratio, so a single molecule of Sfi1p binds multiple molecules of Cdc31p. The centrosomal human protein containing Sfi1 repeats also binds centrin in the repeat region, showing that this centrin-binding motif is conserved.


2010 ◽  
Vol 21 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Claudia Lang ◽  
Sandrine Grava ◽  
Tineke van den Hoorn ◽  
Rhonda Trimble ◽  
Peter Philippsen ◽  
...  

We investigated the migration of multiple nuclei in hyphae of the filamentous fungus Ashbya gossypii. Three types of cytoplasmic microtubule (cMT)-dependent nuclear movements were characterized using live cell imaging: short-range oscillations (up to 4.5 μm/min), rotations (up to 180° in 30 s), and long-range nuclear bypassing (up to 9 μm/min). These movements were superimposed on a cMT-independent mode of nuclear migration, cotransport with the cytoplasmic stream. This latter mode is sufficient to support wild-type-like hyphal growth speeds. cMT-dependent nuclear movements were led by a nuclear-associated microtubule-organizing center, the spindle pole body (SPB), which is the sole site of microtubule nucleation in A. gossypii. Analysis of A. gossypii SPBs by electron microscopy revealed an overall laminar structure similar to the budding yeast SPB but with distinct differences at the cytoplasmic side. Up to six perpendicular and tangential cMTs emanated from a more spherical outer plaque. The perpendicular and tangential cMTs most likely correspond to short, often cortex-associated cMTs and to long, hyphal growth-axis–oriented cMTs, respectively, seen by in vivo imaging. Each SPB nucleates its own array of cMTs, and the lack of overlapping cMT arrays between neighboring nuclei explains the autonomous nuclear oscillations and bypassing observed in A. gossypii hyphae.


Sign in / Sign up

Export Citation Format

Share Document