scholarly journals The Werner Syndrome Protein Is Involved in RNA Polymerase II Transcription

1999 ◽  
Vol 10 (8) ◽  
pp. 2655-2668 ◽  
Author(s):  
Adayabalam S. Balajee ◽  
Amrita Machwe ◽  
Alfred May ◽  
Matthew D. Gray ◽  
Junko Oshima ◽  
...  

Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)–dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40–60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II–dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid–protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype.

2017 ◽  
Vol 114 (46) ◽  
pp. 12172-12177 ◽  
Author(s):  
Stefano Malvezzi ◽  
Lucas Farnung ◽  
Claudia M. N. Aloisi ◽  
Todor Angelov ◽  
Patrick Cramer ◽  
...  

Several anticancer agents that form DNA adducts in the minor groove interfere with DNA replication and transcription to induce apoptosis. Therapeutic resistance can occur, however, when cells are proficient in the removal of drug-induced damage. Acylfulvenes are a class of experimental anticancer agents with a unique repair profile suggesting their capacity to stall RNA polymerase (Pol) II and trigger transcription-coupled nucleotide excision repair. Here we show how different forms of DNA alkylation impair transcription by RNA Pol II in cells and with the isolated enzyme and unravel a mode of RNA Pol II stalling that is due to alkylation of DNA in the minor groove. We incorporated a model for acylfulvene adducts, the stable 3-deaza-3-methoxynaphtylethyl-adenosine analog (3d-Napht-A), and smaller 3-deaza-adenosine analogs, into DNA oligonucleotides to assess RNA Pol II transcription elongation in vitro. RNA Pol II was strongly blocked by a 3d-Napht-A analog but bypassed smaller analogs. Crystal structure analysis revealed that a DNA base containing 3d-Napht-A can occupy the +1 templating position and impair closing of the trigger loop in the Pol II active center and polymerase translocation into the next template position. These results show how RNA Pol II copes with minor-groove DNA alkylation and establishes a mechanism for drug resistance.


2021 ◽  
Author(s):  
Qi Jia ◽  
Zhiqiang Hu ◽  
Nannan Song ◽  
Weike Mao

Abstract Purpose: To investigate the role of cyclin-dependent kinase 9 (CDK9) and the therapeutic potential of CDK9 inhibitor (flavopiridol) in monocrotaline (MCT)-induced pulmonary hypertension.Methods: In vivo experiments, pulmonary hypertension rats were established by a single intraperitoneal injection of MCT (60 mg/kg) for 2 weeks and treated with flavopiridol (5 mg/kg, i.p., twice a week) or vehicle for 2 weeks. In vitro experiments, human pulmonary artery smooth muscle cells (HPASMCs) were treated with flavopiridol (0.025-1μM) or vehicle under hypoxic condition. Hemodynamic recording, right ventricle and lung histology, isolation of pulmonary arterial tissues were performed. The expressions of CDK9, RNA polymerase II, c-Myc, Mcl-1 and survivin were determined by qRT-PCR and western blotting, proliferation and apoptosis of PASMCs were also assayed.Results: CDK9 was upregulated in both rat pulmonary arterial tissues and HPASMCs. Upregulation of CDK9 increased the phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNA pol II) on serine-2, promoting the expression of prosurvival and antiapoptotic proteins (c-Myc, Mcl-1 and survivin). Furthermore, treatment with flavopiridol (5 mg/kg) significantly alleviated pulmonary artery remodeling and partially reversed the progression of monocrotaline-induced pulmonary hypertension. Consistently, flavopiridol (0.5 μM) treatment decreased the proliferation and induced the apoptosis of cultured HPASMCs under hypoxic conditions. As a result of CDK9 inhibition and subsequent inhibition of RNA pol II CTD phosphorylation at serine 2, flavopiridol decreased c-Myc, Mcl-1 and survivin expressions in isolated pulmonary small arteries, leading to cell growth inhibition and apoptosis. Conclusion: Flavopiridol mitigates the progression of monocrotaline-induced pulmonary hypertension in rats by targeting cyclin-dependent kinase 9.


1998 ◽  
Vol 180 (23) ◽  
pp. 6187-6192 ◽  
Author(s):  
Sonia Rosenheck ◽  
Mordechai Choder

ABSTRACT Rpb4 is a subunit of Saccharomyces cerevisiae RNA polymerase II (Pol II). It associates with the polymerase preferentially in stationary phase and is essential for some stress responses. Using the promoter-independent initiation and chain elongation assay, we monitored Pol II enzymatic activity in cell extracts. We show here that Rpb4 is required for the polymerase activity at temperature extremes (10 and 35°C). In contrast, at moderate temperature (23°C) Pol II activity is independent of Rpb4. These results are consistent with the role previously attributed to Rpb4 as a subunit whose association with Pol II helps Pol II to transcribe during extreme temperatures. The enzymatic inactivation of Pol II lacking Rpb4 at the nonoptimal temperature was prevented by the addition of recombinant Rpb4 produced in Escherichia coliprior to the in vitro reaction assay. This finding suggests that modification of Rpb4 is not required for its functional association with the other Pol II subunits. Sucrose gradient and immunoprecipitation experiments demonstrated that Rpb4 is present in the cell in excess over the Pol II complex during all growth phases. Nevertheless, the rescue of Pol II activity at the nonoptimal temperature by Rpb4 is possible only when cell extracts are obtained from postlogarithmic cells, not from logarithmically growing cells. This result suggests that Pol II molecules should be modified in order to recruit Rpb4; the portion of the modified Pol II molecules is small during logarithmic phase and becomes predominant in stationary phase.


2001 ◽  
Vol 276 (15) ◽  
pp. 12266-12273 ◽  
Author(s):  
Wenxiang Wei ◽  
Dorjbal Dorjsuren ◽  
Yong Lin ◽  
Weiping Qin ◽  
Takahiro Nomura ◽  
...  

The general transcription factor IIF (TFIIF) assembled in the initiation complex, and RAP30 of TFIIF, have been shown to associate with RNA polymerase II (pol II), although it remains unclear which pol II subunit is responsible for the interaction. We examined whether TFIIF interacts with RNA polymerase II subunit 5 (RPB5), the exposed domain of which binds transcriptional regulatory factors such as hepatitis B virus X protein and a novel regulatory protein, RPB5-mediating protein. The results demonstrated that RPB5 directly binds RAP30in vitrousing purified recombinant proteins andin vivoin COS1 cells transiently expressing recombinant RAP30 and RPB5. The RAP30-binding region was mapped to the central region (amino acids (aa) 47–120) of RPB5, which partly overlaps the hepatitis B virus X protein-binding region. Although the middle part (aa 101–170) and the N-terminus (aa 1–100) of RAP30 independently bound RPB5, the latter was not involved in the RPB5 binding when RAP30 was present in TFIIF complex. Scanning of the middle part of RAP30 by clustered alanine substitutions and then point alanine substitutions pinpointed two residues critical for the RPB5 binding inin vitroandin vivoassays. Wild type but not mutants Y124A and Q131A of RAP30 coexpressed with FLAG-RAP74 efficiently recovered endogenous RPB5 to the FLAG-RAP74-bound anti-FLAG M2 resin. The recovered endogenous RPB5 is assembled in pol II as demonstrated immunologically. Interestingly, coexpression of the central region of RPB5 and wild type RAP30 inhibited recovery of endogenous pol II to the FLAG-RAP74-bound M2 resin, strongly suggesting that the RAP30-binding region of RPB5 inhibited the association of TFIIF and pol II. The exposed domain of RPB5 interacts with RAP30 of TFIIF and is important for the association between pol II and TFIIF.


1983 ◽  
Vol 3 (5) ◽  
pp. 811-818
Author(s):  
S A Mitsialis ◽  
J L Manley ◽  
R V Guntaka

The nucleotide sequences in the long terminal repeat of avian sarcoma virus that are recognized in vitro by HeLa cell RNA polymerase II have been identified. For this purpose, various 5' and 3' deletions were introduced into a cloned long terminal repeat fragment. The effects of these deletions on transcription initiation in HeLa whole-cell extracts were then studied. Three specific transcripts have been identified. The major transcript is initiated at nucleotide +1 (relative to the cap site). Deletion of the upstream sequence between -299 and -55 has no effect on the level of transcription from this start site, whereas deletion of the sequence downstream of -14 drastically reduces the levels of transcription. In contrast, deletion of the sequence downstream from the TATA box has no effect on the initiation or efficiency of synthesis of the two minor RNA species, which are initiated at around nucleotides -260 and -105. The transcription of these RNA products, however, is abolished by an upstream deletion between -299 and -55. These results suggest that HeLa cell RNA polymerase II recognizes in vitro more than one promoter site present in the long terminal repeat of the avian sarcoma virus genome and defines the sequences required for initiation of the major transcript.


2007 ◽  
Vol 27 (5) ◽  
pp. 1631-1648 ◽  
Author(s):  
Igor Chernukhin ◽  
Shaharum Shamsuddin ◽  
Sung Yun Kang ◽  
Rosita Bergström ◽  
Yoo-Wook Kwon ◽  
...  

ABSTRACT CTCF is a transcription factor with highly versatile functions ranging from gene activation and repression to the regulation of insulator function and imprinting. Although many of these functions rely on CTCF-DNA interactions, it is an emerging realization that CTCF-dependent molecular processes involve CTCF interactions with other proteins. In this study, we report the association of a subpopulation of CTCF with the RNA polymerase II (Pol II) protein complex. We identified the largest subunit of Pol II (LS Pol II) as a protein significantly colocalizing with CTCF in the nucleus and specifically interacting with CTCF in vivo and in vitro. The role of CTCF as a link between DNA and LS Pol II has been reinforced by the observation that the association of LS Pol II with CTCF target sites in vivo depends on intact CTCF binding sequences. “Serial” chromatin immunoprecipitation (ChIP) analysis revealed that both CTCF and LS Pol II were present at the β-globin insulator in proliferating HD3 cells but not in differentiated globin synthesizing HD3 cells. Further, a single wild-type CTCF target site (N-Myc-CTCF), but not the mutant site deficient for CTCF binding, was sufficient to activate the transcription from the promoterless reporter gene in stably transfected cells. Finally, a ChIP-on-ChIP hybridization assay using microarrays of a library of CTCF target sites revealed that many intergenic CTCF target sequences interacted with both CTCF and LS Pol II. We discuss the possible implications of our observations with respect to plausible mechanisms of transcriptional regulation via a CTCF-mediated direct link of LS Pol II to the DNA.


1983 ◽  
Vol 3 (5) ◽  
pp. 811-818 ◽  
Author(s):  
S A Mitsialis ◽  
J L Manley ◽  
R V Guntaka

The nucleotide sequences in the long terminal repeat of avian sarcoma virus that are recognized in vitro by HeLa cell RNA polymerase II have been identified. For this purpose, various 5' and 3' deletions were introduced into a cloned long terminal repeat fragment. The effects of these deletions on transcription initiation in HeLa whole-cell extracts were then studied. Three specific transcripts have been identified. The major transcript is initiated at nucleotide +1 (relative to the cap site). Deletion of the upstream sequence between -299 and -55 has no effect on the level of transcription from this start site, whereas deletion of the sequence downstream of -14 drastically reduces the levels of transcription. In contrast, deletion of the sequence downstream from the TATA box has no effect on the initiation or efficiency of synthesis of the two minor RNA species, which are initiated at around nucleotides -260 and -105. The transcription of these RNA products, however, is abolished by an upstream deletion between -299 and -55. These results suggest that HeLa cell RNA polymerase II recognizes in vitro more than one promoter site present in the long terminal repeat of the avian sarcoma virus genome and defines the sequences required for initiation of the major transcript.


1991 ◽  
Vol 113 (4) ◽  
pp. 705-714 ◽  
Author(s):  
U Fischer ◽  
E Darzynkiewicz ◽  
S M Tahara ◽  
N A Dathan ◽  
R Lührmann ◽  
...  

The requirements for nuclear targeting of a number of U snRNAs have been studied by analyzing the behavior of in vitro-generated transcripts after microinjection into the cytoplasm of Xenopus oocytes. Like the previously studied U1 snRNA, U2 snRNA is excluded from the nucleus when it does not have the 2,2,7mGpppN cap structure typical of the RNA polymerase II (pol II)-transcribed U snRNAs. Surprisingly, two other pol II-transcribed U snRNAs, U4 and U5, have a much less stringent requirement for the trimethyl cap structure. The gamma-monomethyl triphosphate cap structure of the RNA polymerase III-transcribed U6 snRNA, on the other hand, is shown not to play a role in nuclear targeting. Wheat germ agglutinin, which is known to prevent the import of many proteins into the nucleus, inhibits nuclear uptake of U6, but not of U1 or U5 snRNAs. Conversely, a 2,2,7mGpppG dinucleotide analogue of the trimethyl cap structure inhibits transport of the pol II U snRNAs, but does not detectably affect the transport of either U6 snRNA or a karyophilic protein. From these results it can be deduced that U6 enters the nucleus by a pathway similar or identical to that used by karyophilic proteins. The composite nuclear localization signals of the trimethyl cap-containing U snRNPs, however, do not function in the same way as previously defined nuclear targeting signals.


2001 ◽  
Vol 21 (8) ◽  
pp. 2736-2742 ◽  
Author(s):  
Joseph V. Geisberg ◽  
Frank C. Holstege ◽  
Richard A. Young ◽  
Kevin Struhl

ABSTRACT NC2 (Dr1-Drap1 or Bur6-Ydr1) has been characterized in vitro as a general negative regulator of RNA polymerase II (Pol II) transcription that interacts with TATA-binding protein (TBP) and inhibits its function. Here, we show that NC2 associates with promoters in vivo in a manner that correlates with transcriptional activity and with occupancy by basal transcription factors. NC2 rapidly associates with promoters in response to transcriptional activation, and it remains associated under conditions in which transcription is blocked after assembly of the Pol II preinitiation complex. NC2 positively and negatively affects approximately 17% of Saccharomyces cerevisiaegenes in a pattern that resembles the response to general environmental stress. Relative to TBP, NC2 occupancy is high at promoters where NC2 is positively required for normal levels of transcription. Thus, NC2 is associated with the Pol II preinitiation complex, and it can play a direct and positive role at certain promoters in vivo.


2004 ◽  
Vol 24 (7) ◽  
pp. 2863-2874 ◽  
Author(s):  
Thomas C. Tubon ◽  
William P. Tansey ◽  
Winship Herr

ABSTRACT The general transcription factor TFIIB is a highly conserved and essential component of the eukaryotic RNA polymerase II (pol II) transcription initiation machinery. It consists of a single polypeptide with two conserved structural domains: an amino-terminal zinc ribbon structure (TFIIBZR) and a carboxy-terminal core (TFIIBCORE). We have analyzed the role of the amino-terminal region of human TFIIB in transcription in vivo and in vitro. We identified a small nonconserved surface of the TFIIBZR that is required for pol II transcription in vivo and for different types of basal pol II transcription in vitro. Consistent with a general role in transcription, this TFIIBZR surface is directly involved in the recruitment of pol II to a TATA box-containing promoter. Curiously, although the amino-terminal human TFIIBZR domain can recruit both human pol II and yeast (Saccharomyces cerevisiae) pol II, the yeast TFIIB amino-terminal region recruits yeast pol II but not human pol II. Thus, a critical process in transcription from many different promoters—pol II recruitment—has changed in sequence specificity during eukaryotic evolution.


Sign in / Sign up

Export Citation Format

Share Document