scholarly journals Control of Microtubule Dynamics by Stu2p Is Essential for Spindle Orientation and Metaphase Chromosome Alignment in Yeast

2001 ◽  
Vol 12 (9) ◽  
pp. 2870-2880 ◽  
Author(s):  
Karena A. Kosco ◽  
Chad G. Pearson ◽  
Paul S. Maddox ◽  
Peijing Jeremy Wang ◽  
Ian R. Adams ◽  
...  

Stu2p is a member of a conserved family of microtubule-binding proteins and an essential protein in yeast. Here, we report the first in vivo analysis of microtubule dynamics in cells lacking a member of this protein family. For these studies, we have used a conditional Stu2p depletion strain expressing α-tubulin fused to green fluorescent protein. Depletion of Stu2p leads to fewer and less dynamic cytoplasmic microtubules in both G1 and preanaphase cells. The reduction in cytoplasmic microtubule dynamics is due primarily to decreases in both the catastrophe and rescue frequencies and an increase in the fraction of time microtubules spend pausing. These changes have significant consequences for the cell because they impede the ability of cytoplasmic microtubules to orient the spindle. In addition, recovery of fluorescence after photobleaching indicates that kinetochore microtubules are no longer dynamic in the absence of Stu2p. This deficiency is correlated with a failure to properly align chromosomes at metaphase. Overall, we provide evidence that Stu2p promotes the dynamics of microtubule plus-ends in vivo and that these dynamics are critical for microtubule interactions with kinetochores and cortical sites in the cytoplasm.

1995 ◽  
Vol 130 (3) ◽  
pp. 639-650 ◽  
Author(s):  
K R Olson ◽  
J R McIntosh ◽  
J B Olmsted

MAP 4 is a ubiquitous microtubule-associated protein thought to play a role in the polymerization and stability of microtubules in interphase and mitotic cells. We have analyzed the behavior of protein domains of MAP 4 in vivo using chimeras constructed from these polypeptides and the green fluorescent protein (GFP). GFP-MAP 4 localizes to microtubules; this is confirmed by colocalization of GFP-MAP 4 with microtubules that have incorporated microinjected rhodamine-tubulin, and by loss of localized fluorescence after treatment of cells with anti-microtubule agents. Different subdomains of MAP 4 have distinct effects on microtubule organization and dynamics. The entire basic domain of MAP 4 reorganizes microtubules into bundles and stabilizes these arrays against depolymerization with nocodazole. Within the basic domain, the PGGG repeats, which are conserved with MAP 2 and tau, have a weak affinity for microtubules and are dispensable for microtubule binding, whereas the MAP 4-unique PSP region can function independently in binding. The projection domain shows no microtubule localization, but does modulate the association of various binding subdomains with microtubules. The acidic carboxy terminus of MAP 4 strongly affects the microtubule binding characteristics of the other domains, despite constituting less than 6% of the protein. These data show that MAP 4 association with microtubules is modulated by sequences both within and outside the basic domain. Further, our work demonstrates that GFP chimeras will allow an in vivo analysis of the effects of MAPs and their variants on microtubule dynamics in real time.


1999 ◽  
Vol 339 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Arthur L. KRUCKEBERG ◽  
Ling YE ◽  
Jan A. BERDEN ◽  
Karel van DAM

The Hxt2 glucose transport protein of Saccharomyces cerevisiae was genetically fused at its C-terminus with the green fluorescent protein (GFP). The Hxt2-GFP fusion protein is a functional hexose transporter: it restored growth on glucose to a strain bearing null mutations in the hexose transporter genes GAL2 and HXT1 to HXT7. Furthermore, its glucose transport activity in this null strain was not markedly different from that of the wild-type Hxt2 protein. We calculated from the fluorescence level and transport kinetics that induced cells had 1.4×105 Hxt2-GFP molecules per cell, and that the catalytic-centre activity of the Hxt2-GFP molecule in vivo is 53 s-1 at 30 °C. Expression of Hxt2-GFP was induced by growth at low concentrations of glucose. Under inducing conditions the Hxt2-GFP fluorescence was localized to the plasma membrane. In a strain impaired in the fusion of secretory vesicles with the plasma membrane, the fluorescence accumulated in the cytoplasm. When induced cells were treated with high concentrations of glucose, the fluorescence was redistributed to the vacuole within 4 h. When endocytosis was genetically blocked, the fluorescence remained in the plasma membrane after treatment with high concentrations of glucose.


2021 ◽  
Vol 30 ◽  
pp. 096368972097821
Author(s):  
Andrea Tenorio-Mina ◽  
Daniel Cortés ◽  
Joel Esquivel-Estudillo ◽  
Adolfo López-Ornelas ◽  
Alejandro Cabrera-Wrooman ◽  
...  

Human skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors. In this article we tested the hypothesis that human keratinocytes can adopt neural fates after culturing them in suspension with a neural medium. Initially, keratinocytes expressed Keratins and Vimentin. After neural induction, transcriptional upregulation of NESTIN, SOX2, VIMENTIN, SOX1, and MUSASHI1 was observed, concomitant with significant increases in NESTIN detected by immunostaining. However, in vitro differentiation did not yield the expression of neuronal or astrocytic markers. We tested the differentiation potential of control and neural-induced keratinocytes by grafting them in the developing CNS of rats, through ultrasound-guided injection. For this purpose, keratinocytes were transduced with lentivirus that contained the coding sequence of green fluorescent protein. Cell sorting was employed to select cells with high fluorescence. Unexpectedly, 4 days after grafting these cells in the ventricles, both control and neural-induced cells expressed green fluorescent protein together with the neuronal proteins βIII-Tubulin and Microtubule-Associated Protein 2. These results support the notion that in vivo environment provides appropriate signals to evaluate the neuronal differentiation potential of keratinocytes or other non-neural cell populations.


1999 ◽  
Vol 17 (5) ◽  
pp. 557-561 ◽  
Author(s):  
Boris Hedtke ◽  
Martin Meixner ◽  
Sabine Gillandt ◽  
Ekkehard Richter ◽  
Thomas Börner ◽  
...  

2001 ◽  
Vol 44 (S1) ◽  
pp. S339-S341
Author(s):  
K. E. Luker ◽  
G. D. Luker ◽  
C. M. Pica ◽  
J. L. Dahlheimer ◽  
T. J. Fahrner ◽  
...  

Development ◽  
2000 ◽  
Vol 127 (9) ◽  
pp. 1953-1960 ◽  
Author(s):  
M.C. Halloran ◽  
M. Sato-Maeda ◽  
J.T. Warren ◽  
F. Su ◽  
Z. Lele ◽  
...  

Over the past few years, a number of studies have described the generation of transgenic lines of zebrafish in which expression of reporters was driven by a variety of promoters. These lines opened up the real possibility that transgenics could be used to complement the genetic analysis of zebrafish development. Transgenic lines in which the expression of genes can be regulated both in space and time would be especially useful. Therefore, we have cloned the zebrafish promoter for the inducible hsp70 gene and made stable transgenic lines of zebrafish that express the reporter green fluorescent protein gene under the control of a hsp70 promoter. At normal temperatures, green fluorescent protein is not detectable in transgenic embryos with the exception of the lens, but is robustly expressed throughout the embryo following an increase in ambient temperature. Furthermore, we have taken advantage of the accessibility and optical clarity of the embryos to express green fluorescent protein in individual cells by focussing a sublethal laser microbeam onto them. The targeted cells appear to develop normally: cells migrate normally, neurons project axons that follow normal pathways, and progenitor cells divide and give rise to normal progeny cells. By generating other transgenic lines in which the hsp70 promoter regulates genes of interest, it should be possible to examine the in vivo activity of the gene products by laser-inducing specific cells to express them in zebrafish embryos. As a first test, we laser-induced single muscle cells to make zebrafish Sema3A1, a semaphorin that is repulsive for specific growth cones, in a hsp70-sema3A1 transgenic line of zebrafish and found that extension by the motor axons was retarded by the induced muscle.


Sign in / Sign up

Export Citation Format

Share Document